1. Stephen H. Schneider in an interview in Discover, (October 1989), pp. 45-48 zitiert nach https://wattsupwiththat.com/2019/04/11/the-person-who-set-the-stage-for-entire-deception-of-human-caused-global-warming-agw-stephen-schneider/

2. Curry,J., https://judithcurry.com/2019/08/22/climate-change-whats-the-worst-case/

3. IPCC 2013, Summary for policymakers A1. https://www.ipcc.ch/sr15/chapter/spm/

4. IPCC 2013 S. 662, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf, sowie IPCC AR5 Synthesis report: Climate change 2014 S. 44/45, https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf

5. Malavelle, F. F., Haywood, J. M., Jones, A., Gettelman, A., Clarisse, L., Bauduin, S., Allan, R. P., Karset, I. H. H., Kristjánsson, J. E., Oreopoulos, L., Cho, N., Lee, D., Bellouin, N., Boucher, O., Grosvenor, D. P., Carslaw, K. S., Dhomse, S., Mann, G. W., Schmidt, A., Coe, H., Hartley, M. E., Dalvi, M., Hill, A. A., Johnson, B. T., Johnson, C. E., Knight, J. R., O’Connor, F. M., Partridge, D. G., Stier, P., Myhre, G., Platnick, S., Stephens, G. L., Takahashi, H., Thordarson, T. (2017): Strong constraints on aerosol–cloud interactions from volcanic eruptions: Nature 546, 485.

6. Stevens, B. (2017): Clouds unfazed by haze: Nature 546 (7659), 483-484.

7. Archer,D. und Rahmstorf, S. (2010) The climate crisis, s.43, 1.Ed. Cambridge University press, Cambridge (UK)

8. Acid news, Air pollution and climate secretariat , Sweden, 3.10.2012, https://www.airclim.org/acidnews/china-new-emission-standards-power-plants

9. Klimont, Z; S J Smith and J Cofala (2013) – The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, Volume 8. Grafik: https://ourworldindata.org/grapher/so-emissions-by-world-region-in-million-tonnes auf der Grundlage der Daten von Klimont et al.

10. Lindzen, R. S., Choi, Y.-S. (2009): On the determination of climate feedbacks from ERBE data: Geophysical Research Letters 36 (L16705).

11. Trenberth, K. E., Fasullo, J. T., O’Dell, C., Wong, T. (2010): Relationships between tropical sea surface temperature and top-of-atmosphere radiation: Geophysical Research Letters 37, 1-5.

12. Dessler, A.E. (2011) Cloud variations and the earth’s energy budget. Geophysical Research Letters 38, 1-3

13. Mauritsen,T., Stevens,B., Missing iris effect as a possible cause of muted hydrologival change and high sensitivity in models. https://www.nature.com/articles/ngeo2414, siehe auch http://www.mpimet.mpg.de/kommunikation/aktuelles/im-fokus/klimasensitivitaet/

14. Choi, Y.-S., Kim, W., Yeh, S.-W., Masunaga, H., Kwon, M.-J., Jo, H.-S., Huang, L. (2017): Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data: Journal of Geophysical Research: Atmospheres 122 (11), 5917-5931.

15. Mauritsen,T., R.Pincus, Committed warming inferred from observations, Nature climate change 7 652-6566(2017), https://www.nature.com/articles/nclimate3357

16. http://www.mpimet.mpg.de/kommunikation/aktuelles/im-fokus/klimasensitivitaet/

17. Palmer,T., Stevens, B., The scientific challenge of understanding and estimating climatic change,PNAS December 3, 2019 116(49) 24390-24395, https://www.pnas.org/content/116/49/24390

18. https://www.mpimet.mpg.de/kommunikation/aktuelles/single-news/news/neue-veroeffentlichung-dyamond-klimamodelle-der-naechsten-generation/

19. Spencer, R., http://www.drroyspencer.com/2019/12/cmip5-model-atmospheric-warming-1979-2018-some-comparisons-to-observations/

20. Lewis, N., Curry, J. (2018): The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity: Journal of Climate 31 (15), 6051-6071.

21. Curry.J., https://judithcurry.com/2020/02/13/plausible-scenarios-for-climate-change-2020-2050/

22. IPCC, Global warming of 1,5 °C, https://www.ipcc.ch/sr15/

23. Feulner, G., Rahmstorf, S. (2010): On the effect of a new grand minimum of solar activity on the future climate on Earth: Geophysical Research Letters 37, 1-5.

24. Roedel, W.; Wagner,T. Physik unserer Umwelt: Die Atmosphäre, Springer. 5. Auflage, 2017, S.438-439

25. IPCC AR5, 2013 S.472, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf, S. 472, Box 6.19

26. Matthews, H. D., Zickfeld, K., Knutti, R., Allen, M. R. (2018): Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets: Environmental Research Letters 13 (1), 010201.

27. Sonnemann, G. R., Grygalashvyly, M. (2013): Effective CO2 lifetime and future CO2 levels based on fit function: Ann. Geophys. 31 (9), 1591-1596.

28. Max-Planck-Institut für Meteorologie Hamburg, https://www.mpimet.mpg.de/kommunikation/aktuelles/single-news/news/co2-ausstoss-hat-unerwartet-starke-auswirkungen-auf-die-pflanzenproduktivitaet-der-arktis/

29. Winkler, A. J., Myneni, R. B., Alexandrov, G. A., Brovkin, V. (2019): Earth system models underestimate carbon fixation by plants in the high latitudes: Nature Communications 10 (1), 885.

30. Zou Ji et al, Pursuing an innovative development pathway, understanding Chinas INDC, https://www.thepmr.org/system/files/documents/Technical%20summary-Understanding%20China%20INDC-Nov%2030-print.pdf