III. Eis

15. Wie stabil ist das Eis der Antarktis?

1. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., Deb, P. (2016): Absence of 21st century warming on Antarctic Peninsula consistent with natural variability: Nature 535, 411.

2. Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., Turner, J. (2003): Recent Rapid Regional Climate Warming on the Antarctic Peninsula: Climatic Change 60 (3), 243-274.

3. Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S., Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D., van Ommen, T., Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N., Isaksson, E., Ekaykin, A., Frezzotti, M., Werner, M. (2017): Antarctic climate variability at regional and continental scales over the last 2,000 years: Climate of the Past 13, 1609-1634.

4. Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., Wilson, A. B. (2013): Central West Antarctica among the most rapidly warming regions on Earth: Nature Geoscience 6, 139-145.

5. Bunde, A., Ludescher, J., Franzke, C. L. E., Büntgen, U. (2014): How significant is West Antarctic warming?: Nature Geoscience 7, 246.

6. Nicolas, J. P., Bromwich, D. H. (2014): New Reconstruction of Antarctic Near-Surface Temperatures: Multidecadal Trends and Reliability of Global Reanalyses: Journal of Climate 27 (21), 8070-8093.

7. Fernandoy, F., Tetzner, D., Meyer, H., Gacitúa, G., Hoffmann, K., Falk, U., Lambert, F., MacDonell, S. (2018): New insights into the use of stable water isotopes at the northern Antarctic Peninsula as a tool for regional climate studies: The Cryosphere 12, 1069-1090.

8. Favier, V., Krinner, G., Amory, C., Gallée, H., Beaumet, J., Agosta, C. (2017): Antarctica-Regional Climate and Surface Mass Budget: Current Climate Change Reports.

9. Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., Ruiz-Fernández, J., Trigo, R. (2017): Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere: Science of The Total Environment 580 (Supplement C), 210-223.

10. Engel, Z., Láska, K., Nyvlt, D., Stachon, Z. (2018): Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009–2015: Journal of Glaciology 64 (245), 349-361.

11. Seehaus, T., Cook, A. J., Silva, A. B., Braun, M. (2018): Changes in glacier dynamics in the northern Antarctic Peninsula since 1985: The Cryosphere 12 (2), 577-594.

12. Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., Shindell, D. T. (2009): Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year: Nature 457, 459.

13. Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O., Charman, D. J., Clem, K. R., Crosta, X., de Lavergne, C., Eisenman, I., England, M. H., Fogt, R. L., Frankcombe, L. M., Marshall, G. J., Masson-Delmotte, V., Morrison, A. K., Orsi, A. J., Raphael, M. N., Renwick, J. A., Schneider, D. P., Simpkins, G. R., Steig, E. J., Stenni, B., Swingedouw, D., Vance, T. R. (2016): Assessing recent trends in high-latitude Southern Hemisphere surface climate: Nature Climate Change 6, 917.

14. Shuman, C. A., Stearns, C. R. (2001): Decadal-Length Composite Inland West Antarctic Temperature Records: Journal of Climate 14 (9), 1977-1988.

15. Yang, J.-W., Han, Y., Orsi, A. J., Kim, S.-J., Han, H., Ryu, Y., Jang, Y., Moon, J., Choi, T., Hur, S. D., Ahn, J. (2018): Surface Temperature in Twentieth Century at the Styx Glacier, Northern Victoria Land, Antarctica, From Borehole Thermometry: Geophysical Research Letters 45 (18), 9834-9842.

16. Marshall, J., Armour, K. C., Scott, J. R., Kostov, Y., Hausmann, U., Ferreira, D., Shepherd, T. G., Bitz, C. M. (2014): The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2019).

17. O’Donnell, R., Lewis, N., McIntyre, S., Condon, J. (2011): Improved Methods for PCA-Based Reconstructions: Case Study Using the Steig et al. (2009) Antarctic Temperature Reconstruction: Journal of Climate 24 (8), 2099-2115.

18. Clem, K. R., Renwick, J. A., McGregor, J. (2018): Autumn Cooling of Western East Antarctica Linked to the Tropical Pacific: Journal of Geophysical Research: Atmospheres 123 (1), 89-107.

19. Ramesh, K. J., Soni, V. K. (2018): Perspectives of Antarctic weather monitoring and research efforts: Polar Science 18, 183-188.

20. Sinclair, K. E., Bertler, N. A. N., van Ommen, T. D. (2012): Twentieth-Century Surface Temperature Trends in the Western Ross Sea, Antarctica: Evidence from a High-Resolution Ice Core: Journal of Climate 25 (10), 3629-3636.

21. Alfred-Wegener-Institut (2012): Meteorologisches Observatorium wird Klimabeobachtungsstation – 30 Jahre Temperatur-Messungen an der Antarktis-Forschungsstation Neumayer: 12.1.2012, https://www.awi.de/ueber-uns/service/presse-detailansicht/presse/meteorologisches-observatorium-wird-klimabeobachtungsstation-30-jahre-temperatur-messungen-an-der.html

22. Kusahara, K., Williams, G. D., Massom, R., Reid, P., Hasumi, H. (2017): Roles of wind stress and thermodynamic forcing in recent trends in Antarctic sea ice and Southern Ocean SST: An ocean-sea ice model study: Global and Planetary Change 158 (Supplement C), 103-118.

23. Fan, T., Deser, C., Schneider, D. P. (2014): Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950: Geophysical Research Letters 41 (7), 2419-2426.

24. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., Newsom, E. R. (2016): Southern Ocean warming delayed by circumpolar upwelling and equatorward transport: Nature Geoscience 9, 549.

25. Latif, M., Martin, T., Reintges, A., Park, W. (2017): Southern Ocean Decadal Variability and Predictability: Current Climate Change Reports 3 (3), 163-173.

26. Sallée, J.-B. (2018): Southern Ocean Warming: Oceanography 31 (2), 52-62.

27. Ludescher, J., Bunde, A., Franzke, C. L. E., Schellnhuber, H. J. (2016): Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica: Climate Dynamics 46 (1), 263-271.

28. Thomas, E. R., Bracegirdle, T. J., Turner, J., Wolff, E. W. (2013): A 308 year record of climate variability in West Antarctica: Geophysical Research Letters 40 (20), 5492-5496.

29. Chylek, P., Folland, C. K., Lesins, G., Dubey, M. K. (2010): Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures: Geophysical Research Letters 37, 1-4.

30. Steig, E. J., Ding, Q., White, J. W. C., Kuttel, M., Rupper, S. B., Neumann, T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K. C., Hoffmann, G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T. J., Schneider, D. P., Schauer, A. J., Teel, R. P., Vaughn, B. H., Burgener, L., Williams, J., Korotkikh, E. (2013): Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years: Nature Geosci 6 (5), 372-375.

31. Smith, K. L., Polvani, L. M. (2017): Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models: Climate Dynamics 48 (7), 2653-2670.

32. Schneider, D. P., Steig, E. J., van Ommen, T. D., Dixon, D. A., Mayewski, P. A., Jones, J. M., Bitz, C. M. (2006): Antarctic temperatures over the past two centuries from ice cores: Geophysical Research Letters 33 (16), n/a-n/a.

33. Osipov, E. Y., Khodzher, T. V., Golobokova, L. P., Onischuk, N. A., Lipenkov, V. Y., Ekaykin, A. A., Shibaev, Y. A., Osipova, O. P. (2014): High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica: The Cryosphere 8 (3), 843-851.

34. Medley, B., Thomas, E. R. (2019): Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise: Nature Climate Change 9 (1), 34-39.

35. Philippe, M., Tison, J. L., Fjøsne, K., Hubbard, B., Kjær, H. A., Lenaerts, J. T. M., Drews, R., Sheldon, S. G., De Bondt, K., Claeys, P., Pattyn, F. (2016): Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica: The Cryosphere 10 (5), 2501-2516.

36. Martin-Español, A., Bamber, J. L., Zammit-Mangion, A. (2017): Constraining the mass balance of East Antarctica: Geophysical Research Letters 44 (9), 4168-4175.

37. Goel, V., Brown, J., Matsuoka, K. (2017): Glaciological settings and recent mass balance of the Blåskimen Island in Dronning Maud Land, Antarctica: The Cryosphere Discuss. 2017, 1-24.

38. Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., Brenner, A. C. (2015): Mass gains of the Antarctic ice sheet exceed losses: Journal of Glaciology 61 (230), 1019-1036.

39. University of Bristol (2017): New research shows growth of East Antarctic Ice Sheet was less than previously suggested: 5.5.2017, http://www.bristol.ac.uk/news/2017/may/east-antarctic-ice-sheet.html.

40. NASA (2015): NASA Study: Mass Gains of Antarctic Ice Sheet Greater than Losses: 30.10.2015, https://www.nasa.gov/feature/goddard/nasa-study-mass-gains-of-antarctic-ice-sheet-greater-than-losses

41. Helm, V., Humbert, A., Miller, H. (2014): Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2: The Cryosphere 8 (4), 1539-1559.

42. Boening, C., Lebsock, M., Landerer, F., Stephens, G. (2012): Snowfall-driven mass change on the East Antarctic ice sheet: Geophysical Research Letters 39 (21).

43. King, M. A., Bingham, R. J., Moore, P., Whitehouse, P. L., Bentley, M. J., Milne, G. A. (2012): Lower satellite-gravimetry estimates of Antarctic sea-level contribution: Nature 491 (7425), 586-589.

44. Lovell, A. M., Stokes, C. R., Jamieson, S. S. R. (2017): Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013): Antarctic Science 29 (5), 468-483.

45. Alfred-Wegener-Institut (2014): Rekordrückgang der Eisschilde: Wissenschaftler kartieren erstmals die Höhenveränderungen der Gletscher auf Grönland und in der Antarktis: 20.8.2014, https://www.awi.de/ueber-uns/service/presse-detailansicht/presse/rekordrueckgang-der-eisschilde-wissenschaftler-kartieren-erstmals-die-hoehenveraenderungen-der-gletsch.html

46. Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., Morlighem, M. (2019): Four decades of Antarctic Ice Sheet mass balance from 1979–2017: Proceedings of the National Academy of Sciences 116 (4), 1095-1103.

47. Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S. R. M., van den Broeke, M. R., Winkelmann, R., Levermann, A. (2015): Consistent evidence of increasing Antarctic accumulation with warming: Nature Climate Change 5 (4), 348-352.

48. PIK (2015): Klimawandel: Mehr Schnee in der Antarktis 17.3.2015, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/klimawandel-mehr-schnee-in-der-antarktis

49. Genthon, C., Krinner, G., Castebrunet, H. (2009): Antarctic precipitation and climate-change predictions: horizontal resolution and margin vs plateau issues: Annals of Glaciology 50 (50), 55-60.

50. Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., van den Broeke, M. R. (2016): Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model: Climate Dynamics 47 (5), 1367-1381.

51. Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wouters, B., The, I. t. (2018): Mass balance of the Antarctic Ice Sheet from 1992 to 2017: Nature 558 (7709), 219-222.

52. NASA (2018): Ramp-up in Antarctic ice loss speeds sea level rise: 13.6.2018, https://climate.nasa.gov/news/2749/ramp-up-in-antarctic-ice-loss-speeds-sea-level-rise/

53. Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L., Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A. G. C., Spagnolo, M., Marsh, O. J., Shean, D. E. (2017): Diverse landscapes beneath Pine Island Glacier influence ice flow: Nature Communications 8 (1), 1618.

54. BBC (2017): Antarctic glacier’s rough belly exposed: 20.11.2017, https://www.bbc.com/news/science-environment-42052072

55. Beem, L. H., Tulaczyk, S. M., King, M. A., Bougamont, M., Fricker, H. A., Christoffersen, P. (2014): Variable deceleration of Whillans Ice Stream, West Antarctica: Journal of Geophysical Research: Earth Surface 119 (2), 212-224.

56. Loose, B., Naveira Garabato, A. C., Schlosser, P., Jenkins, W. J., Vaughan, D., Heywood, K. J. (2018): Evidence of an active volcanic heat source beneath the Pine Island Glacier: Nature Communications 9 (1), 2431.

57. University of Rhode Island (2018): Researchers discover volcanic heat source under major Antarctic glacier: 22.6.2018, https://today.uri.edu/news/researchers-discover-volcanic-heat-source-under-major-antarctic-glacier/

58. Witus, A. E., Branecky, C. M., Anderson, J. B., Szczuciński, W., Schroeder, D. M., Blankenship, D. D., Jakobsson, M. (2014): Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica: Quaternary Science Reviews 85, 99-118.

59. Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E., van den Broeke, M. R. (2013): Observed thinning of Totten Glacier is linked to coastal polynya variability: Nature Communications 4 (1), 2857.

60. NASA (2013): NASA Finds Reducing Salt Is Bad for Glacial Health 5.12.2013, https://www.nasa.gov/jpl/news/reducing-salt-bad-for-glacial-health-20131205.html#.VQ7xkuHLL5y

61. Gwyther, D. E., O’Kane, T. J., Galton-Fenzi, B. K., Monselesan, D. P., Greenbaum, J. S. (2018): Intrinsic processes drive variability in basal melting of the Totten Glacier Ice Shelf: Nature Communications 9 (1), 3141.

62. Wouters, B., Martin-Español, A., Helm, V., Flament, T., van Wessem, J. M., Ligtenberg, S. R. M., van den Broeke, M. R., Bamber, J. L. (2015): Dynamic thinning of glaciers on the Southern Antarctic Peninsula: Science 348 (6237), 899-903.

63. University of Bristol (2015): Sudden onset of ice loss in Antarctica detected: 21.5.2015, http://www.bristol.ac.uk/news/2015/may/ice-loss-in-antarctica.html

64. Der Tagesspiegel (2015): Das Eis der Antarktischen Halbinsel schmilzt rasant: 26.5.2015, https://www.tagesspiegel.de/wissen/klimawandel-das-eis-der-antarktischen-halbinsel-schmilzt-rasant/11822780.html

65. Deutschlandfunk (2010): Beunruhigende Vorboten: Westantarktischer Gletscherriese hat Fahrt aufgenommen: 10.6.2010, https://www.deutschlandfunk.de/beunruhigende-vorboten.676.de.html?dram:article_id=27495

66. Joughin, I., Smith, B. E., Medley, B. (2014): Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica: Science 344 (6185), 735-738.

67. Schroeder, D. M., Blankenship, D. D., Young, D. A., Quartini, E. (2014): Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet: Proceedings of the National Academy of Sciences 111 (25), 9070-9072.

68. University of Texas at Austin (2014): Researchers Find Major West Antarctic Glacier Melting from Geothermal Sources: 10.6.2014, http://www.jsg.utexas.edu/news/2014/06/researchers-find-major-west-antarctic-glacier-melting-from-geothermal-sources/

69. Damiani, T. M., Jordan, T. A., Ferraccioli, F., Young, D. A., Blankenship, D. D. (2014): Variable crustal thickness beneath Thwaites Glacier revealed from airborne gravimetry, possible implications for geothermal heat flux in West Antarctica: Earth and Planetary Science Letters 407, 109-122.

70. Luckman, A. (2017): Ich stand auf Larsen C in der Antarktis – dass dieser Eisberg abbrach, hat nicht direkt mit dem Klimawandel zu tun 18.7.2017, https://krautreporter.de/2006-ich-stand-auf-larsen-c-in-der-antarktis-dass-dieser-eisberg-abbrach-hat-nicht-direkt-mit-dem-klimawandel-zu-tun

71. Schannwell, C., Cornford, S., Pollard, D., Barrand, N. E. (2018): Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves: The Cryosphere 12 (7), 2307-2326.

72. EGU (2018): New study puts a figure on sea-level rise following Antarctic ice shelves’ collapse: 19.7.2018, https://www.egu.eu/news/416/new-study-puts-a-figure-on-sea-level-rise-following-antarctic-ice-shelves-collapse/

73. Bevan, S. L., Luckman, A., Hubbard, B., Kulessa, B., Ashmore, D., Kuipers Munneke, P., O’Leary, M., Booth, A., Sevestre, H., McGrath, D. (2017): Centuries of intense surface melt on Larsen C Ice Shelf: The Cryosphere 11 (6), 2743-2753.

74. Dickens, W. A., Kuhn, G., Leng, M. J., Graham, A. G. C., Dowdeswell, J. A., Meredith, M. P., Hillenbrand, C. D., Hodgson, D. A., Roberts, S. J., Sloane, H., Smith, J. A. (2019): Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode: Scientific Reports 9 (1), 14606.

75. Bild (2019): Riesen-Eisberg in der Antarktis abgebrochen … und der Klimawandel hat NICHTS damit zu tun: 2.10.2019, https://www.bild.de/news/ausland/news-ausland/antarktis-eisberg-d-28-abgebrochen-er-ist-15-mal-so-gross-wie-paris-65052976.bild.html

76. Hattermann, T., Nøst, O. A., Lilly, J. M., Smedsrud, L. H. (2012): Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica: Geophysical Research Letters 39 (12).

77. Scheuchl, B., Mouginot, J., Rignot, E. (2012): Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009: The Cryosphere 6 (5), 1019-1030.

78. Hulbe, C. L., Scambos, T. A., Lee, C.-K., Bohlander, J., Haran, T. (2013): Recent changes in the flow of the Ross Ice Shelf, West Antarctica: Earth and Planetary Science Letters 376, 54-62.

79. Clerc, F., Minchew, B. M., Behn, M. D. (2019): Marine Ice Cliff Instability Mitigated by Slow Removal of Ice Shelves: Geophysical Research Letters 46 (21), 12108-12116.

80. MIT (2019): Antarctic ice cliffs may not contribute to sea-level rise as much as predicted: 21.10.2019, http://news.mit.edu/2019/antarctic-ice-cliffs-not-contribute-sea-level-rise-1021

81. Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., Li, X. (2019): Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context of Longer-Term Variability: Reviews of Geophysics 57 (3), 1037-1064.

82. Yang, C. Y., Liu, J., Hu, Y., Horton, R. M., Chen, L., Cheng, X. (2016): Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts: The Cryosphere 10 (5), 2429-2452.

83. Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. Y., Teng, H. (2016): Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability: Nature Geoscience 9 (8), 590-595.

84. AGU (2017): Extraordinary storms caused massive Antarctic sea ice loss in 2016 21.6.2017, https://blogs.agu.org/geospace/2017/06/21/extraordinary-storms-caused-massive-antarctic-sea-ice-loss-2016/

85. Stuecker, M. F., Bitz, C. M., Armour, K. C. (2017): Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season: Geophysical Research Letters 44 (17), 9008-9019.

86. University of Washington (2017): Record-low 2016 Antarctic sea ice due to ‘perfect storm’ of tropical, polar conditions 31.8.2017, https://www.washington.edu/news/2017/08/31/record-low-2016-antarctic-sea-ice-due-to-perfect-storm-of-tropical-polar-conditions/

87. Schlosser, E., Haumann, F. A., Raphael, M. N. (2018): Atmospheric influences on the anomalous 2016 Antarctic sea ice decay: The Cryosphere 12 (3), 1103-1119.

88. Doddridge, E. W., Marshall, J. (2017): Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode: Geophysical Research Letters 44 (19), 9761-9768.

89. Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., Deb, P. (2017): Unprecedented springtime retreat of Antarctic sea ice in 2016: Geophysical Research Letters 44 (13), 6868-6875.

90. Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., van Rensch, P. (2019): Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016: Nature Communications 10 (1), 13.

91. SBS News (2019): Why Antarctica’s shrinking sea ice could be down to natural causes: 18.1.2019, https://www.sbs.com.au/news/why-antarctica-s-shrinking-sea-ice-could-be-down-to-natural-causes

92. Edinburgh, T., Day, J. J. (2016): Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration: The Cryosphere 10 (6), 2721-2730.

93. Lüning, S., Gałka, M., Vahrenholt, F. (2019): The Medieval Climate Anomaly in Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology 532, 109251.

94. Mulvaney, R., Abram, N. J., Hindmarsh, R. C. A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L. C., Alemany, O., Foord, S. (2012): Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history: Nature 489, 141-144.

95. Hodgson, D. A., Bentley, M. J. (2013): Lake highstands in the Pensacola Mountains and Shackleton Range 4300–2250 cal. yr BP: Evidence of a warm climate anomaly in the interior of Antarctica: The Holocene 23 (3), 388-397.

96. Johnson, J. S., Bentley, M. J., Smith, J. A., Finkel, R. C., Rood, D. H., Gohl, K., Balco, G., Larter, R. D., Schaefer, J. M. (2014): Rapid Thinning of Pine Island Glacier in the Early Holocene: Science 343 (6174), 999-1001.

97. Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim, B.-K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Galindo, A. L., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bijl, P. K., Carr, S. A., Dunbar, R. B., Flores, J. A., Hayden, T. G., Katsuki, K., Kong, G. S., Nakai, M., Olney, M. P., Pekar, S. F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., Yamane, M. (2013): Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth: Nature Geoscience 6 (9), 765-769.

98. Shakun, J. D., Corbett, L. B., Bierman, P. R., Underwood, K., Rizzo, D. M., Zimmerman, S. R., Caffee, M. W., Naish, T., Golledge, N. R., Hay, C. C. (2018): Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years: Nature 558 (7709), 284-287.

99. University of University of Pennsylvania (2015): East Antarctic Ice Sheet Has Stayed Frozen for 14 Million Years, Penn Team Reports: 15.12.2015, https://penntoday.upenn.edu/news/east-antarctic-ice-sheet-stayed-frozen-during-ancient-warming-penn-team-reports

100. Indiana University (2017): New study validates East Antarctic ice sheet should remain stable even if western ice sheet melts: 17.8.2017, https://news.iu.edu/stories/2017/08/iupui/releases/17-east-antarctica-ice-sheet.html

101. Tang, M. S. Y., Chenoli, S. N., Samah, A. A., Hai, O. S. (2018): An assessment of historical Antarctic precipitation and temperature trend using CMIP5 models and reanalysis datasets: Polar Science 15, 1-12.

102. Fogt, R. L., Goergens, C. A., Jones, J. M., Schneider, D. P., Nicolas, J. P., Bromwich, D. H., Dusselier, H. E. (2017): A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion: Geophysical Research Letters 44 (19), 9918-9927.

103. Mayewski, P. A., Carleton, A. M., Birkel, S. D., Dixon, D., Kurbatov, A. V., Korotkikh, E., McConnell, J., Curran, M., Cole-Dai, J., Jiang, S., Plummer, C., Vance, T., Maasch, K. A., Sneed, S. B., Handley, M. (2017): Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes: Quaternary Science Reviews 155 (Supplement C), 50-66.

104. Goosse, H. (2017): Reconstructed and simulated temperature asymmetry between continents in both hemispheres over the last centuries: Climate Dynamics 48 (5), 1483-1501.

105. Hulbe, C. (2017): Is ice sheet collapse in West Antarctica unstoppable?: Science 356 (6341), 910-911.