VII. KLIMASCHÄDEN

32. Fortschreitende Ozeanversauerung: Wie gefährlich ist die Lage?

1. Thor, P., Vermandele, F., Carignan, M.-H., Jacque, S., Calosi, P. (2018): No maternal or direct effects of ocean acidification on egg hatching in the Arctic copepod Calanus glacialis: PLOS ONE 13 (2), e0192496.

2. Geomar (2012): Ozeanversauerung: Das andere Kohlendioxid-Problem: 20.2.2012, https://www.geomar.de/news/article/ozeanversauerung-das-andere-co2-problem/

3. Riebesell, U., Gattuso, J.-P. (2015): Lessons learned from ocean acidification research: Nature Climate Change 5 (1), 12-14.

4. Browman, H. I. (2016): Applying organized scepticism to ocean acidification research: ICES Journal of Marine Science 73 (3), 529-536.

5. James Cook University (2015): Scientists find some thrive in acid seas: 20.10.2015, https://www.jcu.edu.au/news/releases/2016/january/scientists-find-some-thrive-in-acid-seas

6. Takahashi, M., Noonan, S. H. C., Fabricius, K. E., Collier, C. J. (2015): The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents: ICES Journal of Marine Science 73 (3), 876-886.

7. Alfred-Wegener-Institut (2014): Enorme Fortschritte in der Ozeanversauerungsforschung: Neuer Bericht fasst aktuellen Stand des Wissens zusammen: 8.10.2014, https://www.awi.de/nc/ueber-uns/service/presse/pressemeldung/enorme-fortschritte-in-der-ozeanversauerungsforschung-neuer-bericht-fasst-aktuellen-stand-des-wisse.html

8. Deutschlandfunk (2016): Populationen einer Art kommen mit Ozeanversauerung unterschiedlich gut zurecht: 6.4.2016, https://www.deutschlandfunk.de/ozeanversauerung-populationen-einer-art-kommen-mit.676.de.html?dram:article_id=350463

9. JoNova (2016): NOAA scientists admit in private that they can’t name any place affected by ocean acidification: 4.1.2016, http://joannenova.com.au/2016/01/noaa-scientists-admit-in-private-that-they-cant-name-any-place-affected-by-ocean-acidification/

10. McElhany, P. (2017): CO2 sensitivity experiments are not sufficient to show an effect of ocean acidification: ICES Journal of Marine Science 74 (4), 926-928.

11. Cressey, D. (2015): Ocean ‚calamities‘ oversold, say researchers: Nature, 14.1.2015, http://www.nature.com/news/ocean-calamities-oversold-say-researchers-1.16714?WT.mc_id=TWT_NatureNews

12. Wall, M., Fietzke, J., Schmidt, G. M., Fink, A., Hofmann, L. C., de Beer, D., Fabricius, K. E. (2016): Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions: Scientific Reports 6 (1), 30688.

13. Geomar (2016): Blick zurück in die Zukunft: Widerstehen Korallen sinkenden pH-Werten?: 4.8.2016, https://www.geomar.de/de/news/article/blick-zurueck-in-die-zukunft-widerstehen-korallen-sinkenden-ph-werten/

14. Von Euw, S., Zhang, Q., Manichev, V., Murali, N., Gross, J., Feldman, L. C., Gustafsson, T., Flach, C., Mendelsohn, R., Falkowski, P. G. (2017): Biological control of aragonite formation in stony corals: Science 356 (6341), 933-938.

15. Rutgers University (2017): Stony Corals More Resistant to Climate Change Than Thought, Rutgers Study Finds: 1.6.2017, https://www.rutgers.edu/news/stony-corals-more-resistant-climate-change-thought-rutgers-study-finds#.WWu1XFFo2pq

16. Georgiou, L., Falter, J., Trotter, J., Kline, D. I., Holcomb, M., Dove, S. G., Hoegh-Guldberg, O., McCulloch, M. (2015): pH homeostasis during coral calcification in a free ocean CO<sub>2</sub> enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef: Proceedings of the National Academy of Sciences 112 (43), 13219-13224.

17. McCulloch, M., Falter, J., Trotter, J., Montagna, P. (2012): Coral resilience to ocean acidification and global warming through pH up-regulation: Nature Climate Change 2 (8), 623-627.

18. McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A., Försterra, G., López Correa, M., Maier, C., Rüggeberg, A., Taviani, M. (2012): Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation: Geochimica et Cosmochimica Acta 87, 21-34.

19. Cooper, T. F., O’Leary, R. A., Lough, J. M. (2012): Growth of Western Australian Corals in the Anthropocene: Science 335 (6068), 593-596.

20. Shi, Q., Yu, K., Chen, T., Zhang, H., Zhao, M., Yan, H. (2012): Two centuries-long records of skeletal calcification in massive Porites colonies from Meiji Reef in the southern South China Sea and its responses to atmospheric CO2 and seawater temperature: Science China Earth Sciences 55 (1), 1-12.

21. Noonan, S. H. C., Fabricius, K. E., Humphrey, C. (2013): Symbiodinium Community Composition in Scleractinian Corals Is Not Affected by Life-Long Exposure to Elevated Carbon Dioxide: PLOS ONE 8 (5), e63985.

22. Shamberger, K. E. F., Cohen, A. L., Golbuu, Y., McCorkle, D. C., Lentz, S. J., Barkley, H. C. (2014): Diverse coral communities in naturally acidified waters of a Western Pacific reef: Geophysical Research Letters 41 (2), 499-504.

23. NSF (2014): Palau’s coral reefs surprisingly resistant to ocean acidification: 16.1.2014, https://www.nsf.gov/news/news_summ.jsp?cntn_id=130129

24. Sandeman, I. M. (2012): Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals: Revista de Biología Tropical 60, 109-126.

25. McGowan, H. A., MacKellar, M. C., Gray, M. A. (2016): Direct measurements of air-sea CO2 exchange over a coral reef: Geophysical Research Letters 43 (9), 4602-4608.

26. Stolarski, J., Bosellini, F. R., Wallace, C. C., Gothmann, A. M., Mazur, M., Domart-Coulon, I., Gutner-Hoch, E., Neuser, R. D., Levy, O., Shemesh, A., Meibom, A. (2016): A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change: Scientific Reports 6 (1), 27579.

27. Form, A. U., Riebesell, U. (2012): Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa: Global Change Biology 18 (3), 843-853.

28. Geomar (2013): CO2-hungrige Mikroben könnten das marine Nahrungsnetz kurzschließen: 13.9.2013, https://www.geomar.de/news/article/co2-hungrige-mikroben-koennten-das-marine-nahrungsnetz-kurzschliessen/

29. Lohbeck, K. T., Riebesell, U., Reusch, T. B. H. (2012): Adaptive evolution of a key phytoplankton species to ocean acidification: Nature Geoscience 5 (5), 346-351.

30. McCarthy, A., Rogers, S. P., Duffy, S. J., Campbell, D. A. (2012): Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliana huxleyi (Haptophyta): Journal of Phycology 48 (3), 635-646.

31. Bigelow Laboratory for Ocean Sciences (2016): Increased CO2 Enhances Plankton Growth: 15.1.2016, https://www.newswise.com/articles/increased-co2-enhances-plankton-growth

32. Geomar (2018): Rasante Evolution einer Kalkalge: 14.2.2018, https://www.geomar.de/de/news/article/rasante-evolution-einer-kalkalge/

33. Bolton, C. T., Stoll, H. M. (2013): Late Miocene threshold response of marine algae to carbon dioxide limitation: Nature 500 (7464), 558-562.

34. University of Edinburgh (2015): Algae to cope well in climate change: 10.7.2015, https://www.ed.ac.uk/news/2015/algae-300615

35. Rutgers University (2018): How Some Algae May Survive Climate Change: 27.9.2018, https://www.rutgers.edu/news/how-some-algae-may-survive-climate-change#.W9lWKDGyupp

36. Alfred-Wegener-Institut (2018): Arktische Anpassungskünstler: 30.4.2018, https://www.awi.de/nc/ueber-uns/service/presse-detailansicht/presse/arktische-anpassungskuenstler.html

37. Alfred-Wegener-Institut (2016): Winzig kleine Algen, große Widerstandsfähigkeit: 5.12.2016, https://www.awi.de/im-fokus/arktischer-ozean/mikroalgen-im-kongsfjord.html

38. Crawfurd, K. J., Raven, J. A., Wheeler, G. L., Baxter, E. J., Joint, I. (2011): The Response of Thalassiosira pseudonana to Long-Term Exposure to Increased CO2 and Decreased pH: PLOS ONE 6 (10), e26695.

39. Nielsen, L. T., Hallegraeff, G. M., Wright, S. W., Hansen, P. J. (2012): Effects of experimental seawater acidification on an estuarine plankton community: Aquatic Microbial Ecology 65 (3), 271-285.

40. Haynert, K., Schönfeld, J., Schiebel, R., Wilson, B., Thomsen, J. (2014): Response of benthic foraminifera to ocean acidification in their natural sediment environment: a long-term culturing experiment: Biogeosciences 11 (6), 1581-1597.

41. Geomar (2014): Im Schutz des Meeresbodens: Einzeller tolerieren Ozeanversauerung: 9.4.2014, https://www.geomar.de/service/kommunikation/singlepm/article/im-schutz-des-meeresbodens-einzeller-tolerieren-ozeanversauerung/

42. Findlay, H. S., Wood, H. L., Kendall, M. A., Spicer, J. I., Twitchett, R. J., Widdicombe, S. (2011): Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms: Marine Biology Research 7 (6), 565-575.

43. Fulweiler, R. W., Emery, H. E., Heiss, E. M., Berounsky, V. M. (2011): Assessing the Role of pH in Determining Water Column Nitrification Rates in a Coastal System: Estuaries and Coasts 34 (6), 1095.

44. Appelhans, Y. S., Thomsen, J., Pansch, C., Melzner, F., Wahl, M. (2012): Sour times: seawater acidification effects on growth, feeding behaviour and acid–base status of Asterias rubens and Carcinus maenas: Marine Ecology Progress Series 459, 85-98.

45. Catarino, A. I., De Ridder, C., Gonzalez, M., Gallardo, P., Dubois, P. (2012): Sea urchin Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification: Polar Biology 35 (3), 455-461.

46. Caldwell, G. S., Fitzer, S., Gillespie, C. S., Pickavance, G., Turnbull, E., Bentley, M. G. (2011): Ocean acidification takes sperm back in time: Invertebrate Reproduction & Development 55 (4), 217-221.

47. Pedersen, S. A., Hansen, B. H., Altin, D., Olsen, A. J. (2013): Medium-term exposure of the North Atlantic copepod <i>Calanus finmarchicus</i> (Gunnerus, 1770) to CO<sub>2</sub>-acidified seawater: effects on survival and development: Biogeosciences 10 (11), 7481-7491.

48. James Cook University (2016): Shark babies remain strong in future acidic oceans: 8.3.2016, .

49. Parker, L. M., Ross, P. M., O’Connor, W. A., Borysko, L., Raftos, D. A., Pörtner, H.-O. (2012): Adult exposure influences offspring response to ocean acidification in oysters: Global Change Biology 18 (1), 82-92.

50. Ginger, K. W. K., Vera, C. B. S., R, D., Dennis, C. K. S., Adela, L. J., Yu, Z., Thiyagarajan, V. (2013): Larval and Post-Larval Stages of Pacific Oyster (Crassostrea gigas) Are Resistant to Elevated CO2: PLOS ONE 8 (5), e64147.

51. Geomar (2018): Ozeanversauerung: Heringe könnten von veränderter Nahrungskette profitieren: 19.3.2018, https://www.geomar.de/news/article/sswat-heringe/