IV. Extremwetter

19. Gab es früher weniger Dürren?

1. Brot für die Welt (2020): Dürre: Der gefährliche Vorbote des Klimawandels: https://www.brot-fuer-die-welt.de/themen/duerre-und-klimawandel/

2. Umweltbundesamt (2015): Monitoringbericht 2015 zur Deutschen Anpassungsstrategie an den Klimawandel, Dessau-Roßlau.

3. ZAMG (2020): Klimamonitoring: https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring/

4. Haslinger, K., Schöner, W., Anders, I. (2016): Future drought probabilities in the Greater Alpine Region based on COSMO-CLM experiments – spatial patterns and driving forces: Meteorologische Zeitschrift 25 (2), 137-148.

5. Casty, C., Wanner, H., Luterbacher, J., Esper, J., Böhm, R. (2005): Temperature and precipitation variability in the European Alps since 1500: International Journal of Climatology 25 (14), 1855-1880.

6. Labuhn, I., Daux, V., Girardclos, O., Stievenard, M., Pierre, M., Masson-Delmotte, V. (2016): French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ18O: Clim. Past 12 (5), 1101-1117.

7. Dobrovolný, P., Rybníček, M., Kolář, T., Brázdil, R., Trnka, M., Büntgen, U. (2015): A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD: Clim. Past 11 (10), 1453-1466.

8. Dietze, E., Słowiński, M., Zawiska, I., Veh, G., Brauer, A. (2016): Multiple drivers of Holocene lake level changes at a lowland lake in northeastern Germany: Boreas 45 (4), 828-845.

9. GFZ (2016): Starke Seespiegelschwankungen in Nordostdeutschland rekonstruiert: 27.6.2016, https://www.gfz-potsdam.de/medien-kommunikation/meldungen/detailansicht/article/starke-seespiegelschwankungen-in-nordostdeutschland-rekonstruiert/

10. McCabe, G. J., Wolock, D. M. (2015): Variability and trends in global drought: Earth and Space Science 2 (6), 223-228.

11. Hao, Z., AghaKouchak, A., Nakhjiri, N., Farahmand, A. (2014): Global integrated drought monitoring and prediction system: Scientific Data 1 (1), 140001.

12. Damberg, L., AghaKouchak, A. (2014): Global trends and patterns of drought from space: Theoretical and Applied Climatology 117 (3), 441-448.

13. Sheffield, J., Wood, E. F., Roderick, M. L. (2012): Little change in global drought over the past 60 years: Nature 491, 435-438.

14. IPCC (2012): Managing the risks of extreme events and disasters to advance cliamte chage and adaptation: Special Report of the Intergovernmental Panel on Climate Change.

15. IPCC (2012): Management des Risikos von Extremereignissen und Katastrophen zur Förderung der Anpassung an den Klimawandel – Zusammenfassung für politische Entscheidungsträger (deutsche Übersetzung): Sonderbericht des Zwischenstaatlichen Ausschusses für Klimaänderungen (IPCC), https://www.de-ipcc.de/128.php

16. Shen, S. S. P., Tafolla, N., Smith, T. M., Arkin, P. A. (2014): Multivariate Regression Reconstruction and Its Sampling Error for the Quasi-Global Annual Precipitation from 1900 to 2011: Journal of the Atmospheric Sciences 71 (9), 3250-3268.

17. van Wijngaarden, W. A., Syed, A. (2015): Changes in annual precipitation over the Earth’s land mass excluding Antarctica from the 18th century to 2013: Journal of Hydrology 531, 1020-1027.

18. Universität Leipzig (2016): Leipziger Meteorologe untersucht Auswirkungen des Klimawandels auf weltweiten Niederschlag: 28.6.2016, https://www.uni-leipzig.de/newsdetail/artikel/leipziger-meteorologe-untersucht-auswirkungen-des-klimawandels-auf-weltweiten-niederschlag-2016-06-2/

19. Rajah, K., O’Leary, T., Turner, A., Petrakis, G., Leonard, M., Westra, S. (2014): Changes to the temporal distribution of daily precipitation: Geophysical Research Letters 41 (24), 8887-8894.

20. Salzmann, M. (2016): Global warming without global mean precipitation increase?: Science Advances 2 (6), e1501572.

21. Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A. S. (2016): High-resolution mapping of global surface water and its long-term changes: Nature 540 (7633), 418-422.

22. Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S. I. (2014): Global assessment of trends in wetting and drying over land: Nature Geoscience 7 (10), 716-721.

23. ETH Zürich (2014): Klimafolgen-Faustregel umgekrempelt: 14.9.2014, https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/ddww-analyse.html

24. Sun, F., Roderick, M. L., Farquhar, G. D. (2012): Changes in the variability of global land precipitation: Geophys. Res. Lett. 39 (19), L19402.

25. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., Maher, N. (2016): More extreme precipitation in the world’s dry and wet regions: Nature Climate Change 6 (5), 508-513.

26. University of New South Wales (2016): Global warming increases rain in world’s driest areas: 7.3.2016, https://www.climatescience.org.au/content/950-global-warming-increases-rain-worlds-driest-areas

27. García-García, D., Ummenhofer, C. C. (2015): Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO: Geophysical Research Letters 42 (2), 526-535.

28. Sun, Q., Miao, C., AghaKouchak, A., Duan, Q. (2016): Century-scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans: Geophysical Research Letters 43 (12), 6528-6537.

29. Miralles, D. G., van den Berg, M. J., Gash, J. H., Parinussa, R. M., de Jeu, R. A. M., Beck, H. E., Holmes, T. R. H., Jiménez, C., Verhoest, N. E. C., Dorigo, W. A., Teuling, A. J., Johannes Dolman, A. (2014): El Niño–La Niña cycle and recent trends in continental evaporation: Nature Climate Change 4 (2), 122-126.

30. Wanders, N., Wada, Y. (2015): Decadal predictability of river discharge with climate oscillations over the 20th and early 21st century: Geophysical Research Letters 42 (24), 10,689-610,695.

31. MetOffice (2020): The North Atlantic Oscillation: https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/ens-mean/nao-description

32. Lamb, P. J., Peppler, R. A. (1987): North Atlantic Oscillation: Concept and an Application: Bulletin of the American Meteorological Society 68 (10), 1218-1225.

33. Martin, E. R., Thorncroft, C. D. (2014): The impact of the AMO on the West African monsoon annual cycle: Quarterly Journal of the Royal Meteorological Society 140 (678), 31-46.

34. Delworth, T. L., Zhang, R., Mann, M. E. (2007): Decadal to Centennial Variability of the Atlantic from Observations and Models, in Schmittner, A., Chiang, J. C. H., and Hemming, S. R., eds., Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning. Geophysical Monograph Series 173, American Geophysical Union, S. 131-148.

35. Zhang, R., Delworth, T. L. (2006): Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes: Geophysical Research Letters 33 (17).

36. University of Maryland (2018): The Sahara Desert is Expanding: 29.3.2018, https://cmns.umd.edu/news-events/features/4109

37. Max-Planck-Gesellschaft (2016): Warmes Mittelmeer lässt Sahel ergrünen: 30.6.2016, https://www.mpg.de/10631374/sahel-zone-niederschlag-mittelmeer

38. Maidment, R. I., Allan, R. P., Black, E. (2015): Recent observed and simulated changes in precipitation over Africa: Geophysical Research Letters 42 (19), 8155-8164.

39. Hoscilo, A., Balzter, H., Bartholomé, E., Boschetti, M., Brivio, P. A., Brink, A., Clerici, M., Pekel, J. F. (2015): A conceptual model for assessing rainfall and vegetation trends in sub-Saharan Africa from satellite data: International Journal of Climatology 35 (12), 3582-3592.

40. Kaptué, A. T., Prihodko, L., Hanan, N. P. (2015): On regreening and degradation in Sahelian watersheds: Proceedings of the National Academy of Sciences 112 (39), 12133-12138.

41. Brandt, M., Verger, A., Diouf, A. A., Baret, F., Samimi, C. (2014): Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010): Remote Sensing 6 (3), 2408-2434.

42. Sheen, K. L., Smith, D. M., Dunstone, N. J., Eade, R., Rowell, D. P., Vellinga, M. (2017): Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales: Nature Communications 8 (1), 14966.

43. University of Exeter (2017): Summer rainfall in vulnerable African region can be predicted: 24.5.2017, http://www.exeter.ac.uk/news/featurednews/title_585020_en.html

44. Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C., Shamsudduha, M., Villholth, K. G., MacDonald, A. M., Scanlon, B. R., Kotchoni, D. O. V., Vouillamoz, J.-M., Lawson, F. M. A., Adjomayi, P. A., Kashaigili, J., Seddon, D., Sorensen, J. P. R., Ebrahim, G. Y., Owor, M., Nyenje, P. M., Nazoumou, Y., Goni, I., Ousmane, B. I., Sibanda, T., Ascott, M. J., Macdonald, D. M. J., Agyekum, W., Koussoubé, Y., Wanke, H., Kim, H., Wada, Y., Lo, M.-H., Oki, T., Kukuric, N. (2019): Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa: Nature 572 (7768), 230-234.

45. UCL (2019): Groundwater resources in Africa resilient to climate change: 8.8.2019, https://www.ucl.ac.uk/news/2019/aug/groundwater-resources-africa-resilient-climate-change

46. Berntell, E., Zhang, Q., Chafik, L., Körnich, H. (2018): Representation of Multidecadal Sahel Rainfall Variability in 20th Century Reanalyses: Scientific Reports 8 (1), 10937.

47. NOAA (2020): Analyze & Plot Long Range Climate Timeseries: https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Plot/

48. McCabe, G. J., Palecki, M. A., Betancourt, J. L. (2004): Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States: Proceedings of the National Academy of Sciences 101 (12), 4136-4141.

49. Goodrich, G. B. (2007): Influence of the Pacific Decadal Oscillation on Winter Precipitation and Drought during Years of Neutral ENSO in the Western United States: Weather and Forecasting 22 (1), 116-124.

50. Wang, S., Huang, J., He, Y., Guan, Y. (2014): Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on Global Land Dry–Wet Changes: Scientific Reports 4 (1), 6651.

51. Kam, J., Sheffield, J., Wood, E. F. (2014): Changes in drought risk over the contiguous United States (1901–2012): The influence of the Pacific and Atlantic Oceans: Geophysical Research Letters 41 (16), 5897-5903.

52. Benson, L. V., Berry, M. S., Jolie, E. A., Spangler, J. D., Stahle, D. W., Hattori, E. M. (2007): Possible impacts of early-11th-, middle-12th-, and late-13th-century droughts on western Native Americans and the Mississippian Cahokians: Quaternary Science Reviews 26 (3), 336-350.

53. Bureau of Meteorology (2020): Indian Ocean influences on Australian climate: http://www.bom.gov.au/climate/iod/

54. Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B. L. K. (2002): Evidence for solar forcing on the Indian monsoon during the last millennium: Earth and Planetary Science Letters 198, 521-527.

55. Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A. (2003): Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman: Science 300 (5626), 1737-1739.

56. Lone, M. A., Ahmad, S. M., Dung, N. C., Shen, C.-C., Raza, W., Kumar, A. (2014): Speleothem based 1000-year high resolution record of Indian monsoon variability during the last deglaciation: Palaeogeography, Palaeoclimatology, Palaeoecology 395, 1-8.

57. Yin, J. J., Yuan, D. X., Li, H. C., Cheng, H., Li, T. Y., Edwards, R. L., Lin, Y. S., Qin, J. M., Tang, W., Zhao, Z. Y., Mii, H. S. (2014): Variation in the Asian monsoon intensity and dry–wet conditions since the Little Ice Age in central China revealed by an aragonite stalagmite: Clim. Past 10 (5), 1803-1816.

58. Peng, Y., Shen, C., Cheng, H., Xu, Y. (2014): Modeling of severe persistent droughts over eastern China during the last millennium: Clim. Past 10 (3), 1079-1091.

59. Cai, Q., Liu, Y., Lei, Y., Bao, G., Sun, B. (2014): Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau: Clim. Past 10 (2), 509-521.

60. Sun, J., Liu, Y. (2012): Tree ring based precipitation reconstruction in the south slope of the middle Qilian Mountains, northeastern Tibetan Plateau, over the last millennium: J. Geophys. Res. 117 (D8), D08108.

61. Xu, H., Hong, Y., Hong, B. (2012): Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch: Climate Dynamics 39 (7), 2079-2088.

62. Junginger, A., Roller, S., Olaka, L. A., Trauth, M. H. (2014): The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African Humid Period (15–5ka BP): Palaeogeography, Palaeoclimatology, Palaeoecology 396, 1-16.

63. Burn, M. J., Palmer, S. E. (2014): Solar forcing of Caribbean drought events during the last millennium: Journal of Quaternary Science 29 (8), 827-836.

64. Ljungqvist, F. C., Krusic, P. J., Sundqvist, H. S., Zorita, E., Brattström, G., Frank, D. (2016): Northern Hemisphere hydroclimate variability over the past twelve centuries: Nature 532 (7597), 94-98.

65. WSL (2016): Klimamodelle hinterfragt: Wasserhaushalt schwankte im 20. Jahrhundert weniger stark als erwartet: 6.4.2016, https://www.wsl.ch/de/newsseiten/2016/04/klimamodelle-hinterfragt-wasserhaushalt-schwankte-im-20-jahrhundert-weniger-stark-als-erwartet.html

66. Der Spiegel (2016): Fehler in Klimamodellen: „Dürreprognosen sind wenig vertrauenswürdig“ 7.4.2016, https://www.spiegel.de/wissenschaft/natur/klima-gravierende-maengel-bei-klimamodellen-entdeckt-a-1085814.html

67. Basler Zeitung (2013): «Gegen das Wetter sind wir machtlos»: 22.6.2013, https://www.bazonline.ch/wissen/natur/gegen-das-wetter-sind-wir-machtlos/story/25965260