II. Natürlicher und anthropogener Klimawandel

9. Wann war der CO2-Gehalt der Atmosphäre zuletzt so hoch wie heute?

1. Berner, R. A., Kothavala, Z. (2001): Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic Time: American Journal of Science 301 (2), 182-204.

2. Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S., Sinninghe Damsté, J. S. (2018): Molecular fossils from phytoplankton reveal secular CO2 trend over the Phanerozoic: Science Advances 4 (11), eaat4556.

3. Stott, L., Timmermann, A., Thunell, R. (2007): Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO2 Rise and Tropical Warming: Science 318 (5849), 435-438.

4. Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., Barnola, J.-M. (2001): Atmospheric CO2 Concentrations over the Last Glacial Termination: Science 291, 112-114.

5. Chowdhry Beeman, J., Gest, L., Parrenin, F., Raynaud, D., Fudge, T. J., Buizert, C., Brook, E. J. (2019): Antarctic temperature and CO2: near-synchrony yet variable phasing during the last deglaciation: Clim. Past 15 (3), 913-926.

6. Uemura, R., Motoyama, H., Masson-Delmotte, V., Jouzel, J., Kawamura, K., Goto-Azuma, K., Fujita, S., Kuramoto, T., Hirabayashi, M., Miyake, T., Ohno, H., Fujita, K., Abe-Ouchi, A., Iizuka, Y., Horikawa, S., Igarashi, M., Suzuki, K., Suzuki, T., Fujii, Y. (2018): Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years: Nature Communications 9 (1), 961.

7. Du, J., Haley, B. A., Mix, A. C., Walczak, M. H., Praetorius, S. K. (2018): Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations: Nature Geoscience 11 (10), 749-755.

8. Ronge, T. A., Tiedemann, R., Lamy, F., Köhler, P., Alloway, B. V., De Pol-Holz, R., Pahnke, K., Southon, J., Wacker, L. (2016): Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool: Nature Communications 7 (1), 11487.

9. Bauska, T. K., Joos, F., Mix, A. C., Roth, R., Ahn, J., Brook, E. J. (2015): Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium: Nature Geoscience 8 (5), 383-387.

10. Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., Pancost, R. D. (2019): Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels: Clim. Past 15 (2), 539-554.

11. NASA Earth Observatory (2020): How do scientists know that Mauna Loa’s volcanic emissions don’t affect the carbon dioxide data collected there?: https://earthobservatory.nasa.gov/blogs/climateqa/mauna-loa-co2-record/

12. Yang, D., Liu, Y., Cai, Z., Chen, X., Yao, L., Lu, D. (2018): First Global Carbon Dioxide Maps Produced from TanSat Measurements: Advances in Atmospheric Sciences 35 (6), 621-623.

13. IPCC (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 1535 p.:

14. Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S. I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., Zaehle, S. (2019): Global Carbon Budget 2019: Earth Syst. Sci. Data 11 (4), 1783-1838.

15. Resplandy, L., Keeling, R. F., Rödenbeck, C., Stephens, B. B., Khatiwala, S., Rodgers, K. B., Long, M. C., Bopp, L., Tans, P. P. (2018): Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport: Nature Geoscience 11 (7), 504-509.

16. Tolstoy, M. (2015): Mid-ocean ridge eruptions as a climate valve: Geophysical Research Letters 42 (5), 1346-1351.

17. Ilyinskaya, E., Mobbs, S., Burton, R., Burton, M., Pardini, F., Pfeffer, M. A., Purvis, R., Lee, J., Bauguitte, S., Brooks, B., Colfescu, I., Petersen, G. N., Wellpott, A., Bergsson, B. (2018): Globally Significant CO2 Emissions From Katla, a Subglacial Volcano in Iceland: Geophysical Research Letters 45 (19), 10,332-310,341.

18. Ise, T., Dunn, A. L., Wofsy, S. C., Moorcroft, P. R. (2008): High sensitivity of peat decomposition to climate change through water-table feedback: Nature Geoscience 1 (11), 763-766.

19. Philben, M., Holmquist, J., MacDonald, G., Duan, D., Kaiser, K., Benner, R. (2015): Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland: Global Biogeochemical Cycles 29 (6), 729-743.

20. Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough, M. A., Moore, T. R., Richard, P. J. H., De La Cruz, F. B., Toufaily, J., Hamdan, R., Cooper, W. T., Chanton, J. P. (2018): Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance: Nature Communications 9 (1), 3640.

21. Jassey, V. E. J., Signarbieux, C. (2019): Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits: Global Change Biology 25 (11), 3859-3870.

22. Thakur, M. P., Reich, P. B., Hobbie, S. E., Stefanski, A., Rich, R., Rice, K. E., Eddy, W. C., Eisenhauer, N. (2018): Reduced feeding activity of soil detritivores under warmer and drier conditions: Nature Climate Change 8 (1), 75-78.

23. Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W. P., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R., Zeglin, L. H. (2017): Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers: Global Change Biology 23 (8), 3064-3075.

24. Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., Calle, L. (2019): Role of forest regrowth in global carbon sink dynamics: Proceedings of the National Academy of Sciences 116 (10), 4382-4387.

25. Woosley, R. J., Millero, F. J., Wanninkhof, R. (2016): Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003–2014: Global Biogeochemical Cycles 30 (1), 70-90.

26. Barnes, D. K. A. (2015): Antarctic sea ice losses drive gains in benthic carbon drawdown: Current Biology 25 (18), R789-R790.

27. Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., Wanninkhof, R. (2015): The reinvigoration of the Southern Ocean carbon sink: Science 349 (6253), 1221-1224.

28. Sutton, A. J., Wanninkhof, R., Sabine, C. L., Feely, R. A., Cronin, M. F., Weller, R. A. (2017): Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean: Geophysical Research Letters 44 (11), 5627-5636.

29. Ibánhez, J. S. P., Araujo, M., Lefèvre, N. (2016): The overlooked tropical oceanic CO2 sink: Geophysical Research Letters 43 (8), 3804-3812.

30. Brothers, S., Sibley, P. (2018): Light may have triggered a period of net heterotrophy in Lake Superior: Limnology and Oceanography 63 (4), 1785-1798.

31. Wanninkhof, R., Triñanes, J., Park, G.-H., Gledhill, D., Olsen, A. (2019): Large Decadal Changes in Air-Sea CO2 Fluxes in the Caribbean Sea: Journal of Geophysical Research: Oceans 124 (10), 6960-6982.

32. Them, T. R., Gill, B. C., Selby, D., Gröcke, D. R., Friedman, R. M., Owens, J. D. (2017): Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event: Scientific Reports 7 (1), 5003.

33. Liu, Z., Macpherson, G. L., Groves, C., Martin, J. B., Yuan, D., Zeng, S. (2018): Large and active CO2 uptake by coupled carbonate weathering: Earth-Science Reviews 182, 42-49.

34. Latif, M. (2016): 100 Jahre bleibt CO2 in der Luft: 13.1.2016, https://www.infranken.de/regional/lichtenfels/100-jahre-bleibt-co2-in-der-luft;art220,1526506. Sonnemann, G.R., Grygalashvyly, M., Effective lifetime and future CO2 levels based on fit function, https://www.ann-geophys.net/31/1591/2013/angeo-31-1591-2013.pdf

35. IPCC (2007): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

36. Haverd, V., Smith, B., Canadell, J. G., Cuntz, M., Mikaloff-Fletcher, S., Farquhar, G., Woodgate, W., Briggs, P. R., Trudinger, C. M. (2020): Higher than expected CO2 fertilization inferred from leaf to global observations: Global Change Biology 26 (4), 2390-2402.

37. Friedlingstein, P. (2015): Carbon cycle feedbacks and future climate change: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2054), 20140421.

38. United Nations Climate Change (2020): Parameters for tuning a simple carbon cycle model: https://unfccc.int/resource/brazil/carbon.html

39. Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, N. R., Friedrich, T., Frölicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, K., Meinshausen, M., Plattner, G. K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A., Weaver, A. J. (2013): Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis: Atmos. Chem. Phys. 13 (5), 2793-2825.

40. Jeltsch-Thömmes, A., Joos, F. (2020): Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances: Clim. Past 16 (2), 423-451.

41. Hinweis: Unter Abbaurate wird die Zeit verstanden, in der der Ausgangswert auf einen Wert von 1/e=0,3679 absinkt. Die Halbwertszeit ergibt sich aus Abbaurate mal ln 2. So wird aus einer Abbaurate von 50 Jahren eine Halbwertszeit von 34,7 Jahren.

42. Global Carbon Project (2019): Global Carbon Budget 2019: https://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pdf

43. Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., Collatz, G. J. (2016): Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake: Nature Communications 7 (1), 13428.