II. Natürlicher und anthropogener Klimawandel
10. Wie genau lässt sich die Erwärmungswirkung des CO2 quantitativ heute eingrenzen?
1. Curry, J. (2010): CO2 no-feedback sensitivity: http://judithcurry.com/2010/12/11/co2-no-feedback-sensitivity/
2. Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., Lerner, J. (1984): Climate Sensitivity: Analysis of Feedback Mechanisms, in Hansen, J. E., and Takahashi, T., eds., Climate Processes and Climate Sensitivity, AGU Geophysical Monograph Vol. 29, S. 130-163.
3. IPCC (2013): Klimaänderung 2013: Wissenschaftliche Grundlagen. Zusammenfassung für politische Entscheidungsträger (deutsche Übersetzung): http://www.climatechange2013.org/report/wgi-ar5-translations-other/
4. Kaya, Y., Yamaguchi, M., Akimoto, K. (2016): The uncertainty of climate sensitivity and its implication for the Paris negotiation: Sustainability Science 11 (3), 515-518.
5. Dayaratna, K., McKitrick, R., Kreutzer, D. (2016): Empirically-Constrained Climate Sensitivity and the Social Cost of Carbon: https://ssrn.com/abstract=2759505
6. Sutton, R. T. (2018): ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks: Earth Syst. Dynam. 9 (4), 1155-1158. Erläuterung zur Abbildung: (a) Laut 5. Klimazustandsbericht des IPCC liegt die CO2-Klimasensitivität am wahrscheinlichsten im Bereich um 3,0°C, wobei Werte darunter und darüber als zunehmend unwahrscheinlich befunden werden. (b) Die Kosten für Klimaschäden und Anpassungsmaßnahmen nehmen exponentiell mit der CO2-Klimasensitivität zu. Im Umkehrschluss bedeutet dies, dass geringere CO2-Klimasensitivitäten vergleichsweise niedrige Kosten verursachen. (c) Darstellung des Gesamtrisikos (Multiplikation von Eintrittswahrscheinlichkeit und Kosten). Trotz geringer Eintrittswahrscheinlichkeit besteht das höchste Risiko für hohe Werte der CO2-Klimasensitivität. Vieles deutet mittlerweile darauf hin, dass die CO2-Klimasensitivität eher im unteren Drittel der vom IPCC genannten Unsicherheitsspanne liegt (näheres dazu in diesem Kapitel).
7. Deutschlandfunk (2018): 30 Jahre Weltklimarat: Erreichen des 1,5-Grad-Ziels „so gut wie ausgeschlossen“: 15.3.2018, https://www.deutschlandfunk.de/30-jahre-weltklimarat-erreichen-des-1-5-grad-ziels-so-gut.697.de.html?dram:article_id=413101
8. WWF (2015): KlimaMOOC – Gratis Online-Kurs zum Mitmachen: Top Wissenschaftler erklären Klimawandel: https://www.wwf.de/aktiv-werden/bildungsarbeit-lehrerservice/mooc-online-vorlesung/klima-mooc-gratis-online-kurs-zum-mitmachen/
9. Otto, A., Otto, F. E. L., Boucher, O., Church, J., Hegerl, G., Forster, P. M., Gillett, N. P., Gregory, J., Johnson, G. C., Knutti, R., Lewis, N., Lohmann, U., Marotzke, J., Myhre, G., Shindell, D., Stevens, B., Allen, M. R. (2013): Energy budget constraints on climate response: Nature Geosci 6 (6), 415-416.
10. Mauritsen, T., Stevens, B. (2015): Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models: Nature Geosci 8 (5), 346-351.
11. Bony, S., Stevens, B., Coppin, D., Becker, T., Reed, K. A., Voigt, A., Medeiros, B. (2016): Thermodynamic control of anvil cloud amount: Proceedings of the National Academy of Sciences 113 (32), 8927-8932.
12. Mauritsen, T., Pincus, R. (2017): Committed warming inferred from observations: Nature Climate Change 7, 652-655.
13. Max-Planck-Institut für Meteorologie (2016): Klimasensitivität – Ein Maß für den Klimawandel und eine große wissenschaftliche Herausforderung: 30.5.2016, http://www.mpimet.mpg.de/kommunikation/aktuelles/im-fokus/klimasensitivitaet/
14. Rahmstorf, S. (2013): Zur Klimasensitivität: 24.5.2013, https://scilogs.spektrum.de/klimalounge/zur-klimasensitivitaet/
15. Curry, J. (2015): Bjorn Stevens in the cross-fire: 22.4.2015, https://judithcurry.com/2015/04/22/bjorn-stevens-in-the-cross-fire/
16. Jiménez-de-la-Cuesta, D., Mauritsen, T. (2019): Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming: Nature Geoscience 12 (11), 902-905.
17. Lewis, N. (2013): An Objective Bayesian Improved Approach for Applying Optimal Fingerprint Techniques to Estimate Climate Sensitivity: Journal of Climate 26 (19), 7414-7429.
18. Lewis, N., Curry, J. A. (2015): The implications for climate sensitivity of AR5 forcing and heat uptake estimates: Climate Dynamics 45 (3-4), 1009-1023.
19. Lewis, N., Curry, J. (2018): The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity: Journal of Climate 31 (15), 6051-6071.
20. Zeng, X., Geil, K. (2016): Global warming projection in the 21st century based on an observational data-driven model: Geophysical Research Letters 43 (20), 10,947-910,954.
21. Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U., Bartlein, P. J., Mix, A. C., Rosell-Melé, A. (2011): Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum: Science 334 (6061), 1385-1388.
22. von der Heydt, A. S., Köhler, P., van de Wal, R. S. W., Dijkstra, H. A. (2014): On the state dependency of fast feedback processes in (paleo) climate sensitivity: Geophysical Research Letters 41 (18), 6484-6492.
23. Masters, T. (2014): Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models: Climate Dynamics 42 (7-8), 2173-2181.
24. Johansson, D. J. A., O’Neill, B. C., Tebaldi, C., Häggström, O. (2015): Equilibrium climate sensitivity in light of observations over the warming hiatus: Nature Climate Change 5 (5), 449-453.
25. van Hateren, J. H. (2013): A fractal climate response function can simulate global average temperature trends of the modern era and the past millennium: Climate Dynamics 40 (11-12), 2651-2670.
26. Loehle, C. (2014): A minimal model for estimating climate sensitivity: Ecological Modelling 276, 80-84.
27. Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., Myhre, G. (2014): A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series: Earth Syst. Dynam. 5 (1), 139-175.
28. Ring, M. J., Lindner, D., Cross, E. F., Schlesinger, M. E. (2012): Causes of the Global Warming Observed since the 19th Century: Atmospheric and Climate Sciences 2 (4), 401-415.
29. The Research Council of Norway (2013): Global warming less extreme than feared? New estimates from a Norwegian project on climate calculations: 25.1.2013, https://www.sciencedaily.com/releases/2013/01/130125103927.htm
30. Loehle, C. (2015): Global Temperature Trends Adjusted for Unforced Variability: Universal Journal of Geoscience 3 (6), 183-187.
31. Spencer, R. W., Braswell, W. D. (2014): The role of ENSO in global ocean temperature changes during 1955–2011 simulated with a 1D climate model: Asia-Pacific Journal of Atmospheric Sciences 50 (2), 229-237.
32. Asten, M. W. (2012): Estimate of climate sensitivity from carbonate microfossils dated near the Eocene-Oligocene global cooling: Clim. Past Discuss. 2012, 4923-4939.
33. Bates, J. R. (2016): Estimating climate sensitivity using two-zone energy balance models: Earth and Space Science 3 (5), 207-225.
34. Proistosescu, C., Huybers, P. J. (2017): Slow climate mode reconciles historical and model-based estimates of climate sensitivity: Science Advances 3 (7), e1602821.
35. Tan, I., Storelvmo, T., Zelinka, M. D. (2016): Observational constraints on mixed-phase clouds imply higher climate sensitivity: Science 352 (6282), 224-227.
36. Snyder, C. W. (2016): Evolution of global temperature over the past two million years: Nature 538 (7624), 226-228.
37. Weart, S. (2019): The Discovery of Global Warming: https://history.aip.org/climate/co2.htm
38. Brown, P. T., Li, W., Cordero, E. C., Mauget, S. A. (2015): Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise: Scientific Reports 5, 9957.
39. Cox, P. M., Huntingford, C., Williamson, M. S. (2018): Emergent constraint on equilibrium climate sensitivity from global temperature variability: Nature 553 (7688), 319-322.
40. Retallack, G. J. (2013): Permian and Triassic greenhouse crises: Gondwana Research 24 (1), 90-103.
41. Harde, H. (2017): Radiation Transfer Calculations and Assessment of Global Warming by CO2: International Journal of Atmospheric Sciences, https://www.hindawi.com/journals/ijas/2017/9251034/
42. Specht, E., Redemann, T., Lorenz, N. (2016): Simplified mathematical model for calculating global warming through anthropogenic CO2: International Journal of Thermal Sciences 102, 1-8.
43. Christy, J. R., McNider, R. T. (2017): Satellite bulk tropospheric temperatures as a metric for climate sensitivity: Asia-Pacific Journal of Atmospheric Sciences 53 (4), 511-518.
44. Krasting, J. P., Dunne, J. P., Shevliakova, E., Stouffer, R. J. (2014): Trajectory sensitivity of the transient climate response to cumulative carbon emissions: Geophysical Research Letters 41 (7), 2520-2527.
45. Latif, M., D. Dommenget, Keenlyside, N., Park, W., Semenov, V., Strehz, A. (2013): Multidecadal MOC Variability: Conference „AMOC Variability: Dynamics and Impacts“, 16.-19.7.2013, Baltimore, Maryland, https://usclivar.org/sites/default/files/amoc/Latif.pdf
46. Lingenhöhl, D. (2013): Klimaforschung: Nur die Temperaturen pausieren: 19.9.2013, Spektrum der Wissenschaft, https://www.spektrum.de/news/nur-die-temperaturen-pausieren/1207873
47. News24 (2014): UN temperature target is a poor guide – study: 2.10.2014, https://www.news24.com/Green/News/UN-temperature-target-is-a-poor-guide-study-20141002
48. Schwartz, S. E., Charlson, R. J., Kahn, R. A., Ogren, J. A., Rohde, H. (2010): Why Hasn’t Earth Warmed as Much as Expected?: Journal of Climate 23, 2453-2464.
49. Malavelle, F. F., Haywood, J. M., Jones, A., Gettelman, A., Clarisse, L., Bauduin, S., Allan, R. P., Karset, I. H. H., Kristjánsson, J. E., Oreopoulos, L., Cho, N., Lee, D., Bellouin, N., Boucher, O., Grosvenor, D. P., Carslaw, K. S., Dhomse, S., Mann, G. W., Schmidt, A., Coe, H., Hartley, M. E., Dalvi, M., Hill, A. A., Johnson, B. T., Johnson, C. E., Knight, J. R., O’Connor, F. M., Partridge, D. G., Stier, P., Myhre, G., Platnick, S., Stephens, G. L., Takahashi, H., Thordarson, T. (2017): Strong constraints on aerosol–cloud interactions from volcanic eruptions: Nature 546, 485.
50. Voosen, P. (2019): New climate models predict a warming surge: Science 16 April 2019.
51. Forster, P. M., Maycock, A. C., McKenna, C. M., Smith, C. J. (2020): Latest climate models confirm need for urgent mitigation: Nature Climate Change 10, 7-10.
52. Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., Knutti, R. (2020): Past warming trend constrains future warming in CMIP6 models: Science Advances 6 (12), eaaz9549.
53. Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., Taylor, K. E. (2020): Causes of Higher Climate Sensitivity in CMIP6 Models: Geophysical Research Letters 47 (1), e2019GL085782.
54. Knutti, R., Rugenstein, M. A. A., Hegerl, G. C. (2017): Beyond equilibrium climate sensitivity: Nature Geoscience 10, 727.
55. Singh, H. A., Garuba, O. A., Rasch, P. J. (2018): How Asymmetries Between Arctic and Antarctic Climate Sensitivity Are Modified by the Ocean: Geophysical Research Letters 45 (23), 13,031-013,040.
56. Schmithüsen, H., Notholt, J., König-Langlo, G., Lemke, P., Jung, T. (2015): How increasing CO2 leads to an increased negative greenhouse effect in Antarctica: Geophysical Research Letters 42 (23), 10,422-410,428.