VII. Klimaschäden

37. Gefährdet oder verbessert CO2 unsere Ernährungsbasis?

1. IPCC, WG II,Chapter 7, S 495, https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap7_FINAL.pdf

2. FAO, Food Price index, http://www.fao.org/worldfoodsituation/foodpricesindex/en/

3. https://www.statista.com/statistics/266659/west-texas-intermediate-oil-prices/

4. IPCC ebenda, S.499

5. IPCC ebenda, S 504

6. IPCC, ebenda S.512

7. Idso, C., Petition of the Center for the study of carbon dioxide and global change to the US EPA, March 9, 2020, S.59, http://www.co2science.org/articles/V23/mar/EPAPetitionCO2ScienceMarch2020.pdf

8. http://www.co2science.org/subject/f/forests.php

9. Idso, S.B., Kimball, B.A., Shaw, P.E., Widmer, W., Vanderslice, J.T., Higgs, D.J., Montanari, A. and Clark, W.D. 2002. The effect of elevated atmospheric CO2 on the vitamin C concentration of (sour) orange juice.Agriculture, Ecosystems and Environment 90: 1-7

10. Idso, C., Petition of the Center for the study of carbon dioxide and global change to the US EPA, March 9, 2020, S.60

11. Idso, C.D., Idso, S.B., Carter, R.M. and Singer, S.F. (Eds.) 2014.Climate Change Reconsidered II: Biological Impacts. The Heartland Institute, Chicago, Illinois.

12. Weiwei, L.U., Xinxiao, Y.U., Guodong, J.I.A., Hanzhi, L.I. and Ziqiang, L.I.U. 2018. Responses of intrinsic water-use efficiency and tree growth to climate change in semi-arid areas of north China. Scientific Reports 8: 308, doi: 10.1038/s41598-017-18694-z.

13. Soulé, P.T. and Knapp, P.A. 2015. Analyses of intrinsic water-use efficiency indicate performance differences of ponderosa pine and Douglas-fir in response to CO2 enrichment. Journal of Biogeography 42: 144-155.

14. Giammarchi, F., Cherubini, P., Pretzsch, H. and Tonon, G. 2017. The increase of atmospheric CO2 affects growth potential and intrinsic water-use efficiency of Norway spruce forests: insights from a multi-stable isotope analysis in tree rings of two Alpine chronosequences. Trees 31: 503-515.

15. Urrutia-Jalabert, R., Malhi, Y., Barichivich, J., Lara, A., Delgado-Huertas, A., Rodríguez, C.G. and Cuq, E. 2015. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. Journal of Geophysical Research, Biogeosciences 120: 2505-2524.

16. Wils, T.H.G., Robertson, I., Woodborne, S., Hall, G., Koprowski, M. and Eshetu, Z. 2016. Anthropogenic forcing increases the water-use efficiency of African trees. Journal of Quaternary Science 31: 386-390.

17. Choury, Z., Shestakova, T.A., Himrane, H., Touchan, R., Kherchouche, D., Camarero, J.J. and Voltas, J. 2017. Quarantining the Sahara desert: growth and water-use efficiency of Aleppo pine in the Algerian Green Barrier. European Journal of Forest Research 136: 139-152.

18. Cheng, L., Zhang, L., Wang, Y.-P., Canadell, J.G., Chiew, F.H.S., Beringer, J., Li, L., Miralles, D.G., Piao, S. and Zhang, Y. 2017. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications 8: 110, DOI:10.1038/s41467-017-00114-5.

19. Sultana, H., Armstrong, R., Suter, H., Chen, D. and Nicolas, M.E. 2017. A short-term study of wheat grain protein response to post-anthesis foliar nitrogen application under elevated CO2 and supplementary irrigation. Journal of Cereal Science 75: 135-137

20. Barrett, D.J., Richardson, A.E. and Gifford, R.M. 1998. Elevated atmospheric CO2 concentrations increase wheat ro ot phosphatase activity when growth is limited by phosphorus. Australian Journal of Plant Physiology 25: 87-93.

21. Idso, C., Petition of the Center for the study of carbon dioxide and global change to the US EPA, March 9, 2020, S.75-104, http://www.co2science.org/articles/V23/mar/EPAPetitionCO2ScienceMarch2020.pdf

22. Idso, S.B., Kimball, B.A., Shaw, P.E., Widmer, W., Vanderslice, J.T., Higgs, D.J., Montanari, A. and Clark, W.D.2002. The effect of elevated atmospheric CO2 on the vitamin C concentration of (sour) orange juice.Agriculture, Ecosystems and Environment 90: 1-7.

23. Kimball, B.A. and Mitchell, S.T. 1981. Effects of CO2 enrichment, ventilation, and nutrient concentration on the flavor and vitamin C content of tomato fruit. HortScience 16: 665-666

24. Muthusamy, M., Hwang, J.E., Kim, J.A., Jeong, M.J., Park, H.C. and Lee, S.I. 2019. Elevated carbon dioxide significantly improves ascorbic acid content, antioxidative properties and restricted biomass production in cruciferous vegetable seedlings. Plant Biotechnology Reports 13: 293-304.

25. Hampl, J.S., Taylor, C.A. and Johnston, C.S. 1999. Intakes of vitamin C, vegetables and fruits: which schoolchildren are at risk? Journal of the American College of Nutrition 18: 582-590.

26. Balasooriya, H.N., Dassanayake, K.B., Seneweera, S. and Ajlouni, S. 2019. Impact of elevated carbon dioxide and temperature on strawberry polyphenols. Journal of the Science of Food and Agriculture 99: 4659-4669.

27. Saleh, A.M., Selim, S., Jaouni, S.A. and AbdElgawad, H. 2018. CO2 enrichment can enhance the nutritional and health benefits of parsley (Petroselinum crispumL.) and dill (Anethum graveolens L.). Food Chemistry 269: 519-526.

28. Cheng, A., Chen, X., Jin, Q., Wang, W., Shi, J. and Liu, Y. 2013. Comparison of phenolic content and antioxidant capacity of red and yellow onions. Czech Journal of Food Sciences 31: 501-508,

29. Fu, Y., Shao, L., Liu, H., Li, H., Zhao, Z., Ye, P., Chen, P. and Liu, H. 2015. Unexpected decrease in yield and antioxidants in vegetable at very high CO2 levels. Environmental Chemistry Letters 13: 473-479- Zunahme bis 2000 ppm

30. Li, X., Zhang, L., Ahammed, G.J., Li, Z.-X., Wei, J.-P., Shen, C., Yan, P., Zhang, L.-P. and Han, W.-Y. 2017. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Scientific Reports 7: 7937, DOI:10.1038/s41598-017-0