II. Natürlicher und anthropogener Klimawandel
8. Welchen natürlichen Einfluss übt unsere Sonne auf das Erdklima aus?
1. DWD (2020): Zeitreihen und Trends: https://www.dwd.de/DE/leistungen/zeitreihen/zeitreihen.html
2. Laurenz, L., Lüdecke, H.-J., Lüning, S. (2019): Influence of solar activity changes on European rainfall: Journal of Atmospheric and Solar-Terrestrial Physics 185, 29-42.
3. Lüdecke, H.-J., Cina, R., Dammschneider, H.-J., Lüning, S. (2020): Decadal and multidecadal natural variability in European temperature: Journal of Atmospheric and Solar-Terrestrial Physics 205, 105294.
4. Russell, C. T., Jian, L. K., Luhmann, J. G. (2019): The Solar Clock: Reviews of Geophysics 57 (4), 1129-1145.
5. Stefani, F., Giesecke, A., Weier, T. (2019): A Model of a Tidally Synchronized Solar Dynamo: Solar Physics 294 (5), 60.
6. Scherer, K., Fichtner, H., Borrmann, T., Beer, J., Desorgher, L., Flükiger, E., Fahr, H.-J., Ferreira, S. E. S., Langner, U. W., Potgieter, M. S., Heber, B., Masarik, J., Shaviv, N. J., Veizer, J. (2006): Interstellar-terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate: Space Science Reviews 127, 327-465.
7. Usoskin, I. G., Schüssler, M., Solanki, S. K., Mursula, K. (2005): Solar activity, cosmic rays, and Earth’s temperature: A millennium-scale comparison: Journal of Geophysical Research: Space Physics 110 (A10).
8. Scafetta, N., Willson, R. C., Lee, J. N., Wu, D. L. (2019): Modeling Quiet Solar Luminosity Variability from TSI Satellite Measurements and Proxy Models during 1980–2018: Remote Sensing 11 (21), 2569.
9. Zastrow, M. (2015): Model of Solar Cycle’s Impact on Climate Gets Upgrade: Eos 96.
10. Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., White, W. (2010): Solar influences on climate: Reviews of Geophysics 48, 1-53.
11. Woods, T. N., Rottman, G. J. (2002): Solar ultraviolet variability over time periods of aeronomic interest, in Mendillo, M., Nagy, A., and Waite, J. H., eds., Atmospheres in the Solar System: Comparative Aeronomy. Geophysical Monograph 130: Washington, D.C., American Geophysical Union, S. 221-233.
12. Krivova, N. A., Vieira, L. E. A., Solanki, S. K. (2010): Reconstruction of solar spectral irradiance since the Maunder minimum: Journal of Geophysical Research 115, 1-11.
13. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N. A., Tourpali, K., Weber, M., Unruh, Y. C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S. K., Woods, T. N. (2013): Recent variability of the solar spectral irradiance and its impact on climate modelling: Atmos. Chem. Phys. 13 (8), 3945-3977.
14. Agarwal, R., Mishra, R. K. (2008): Solar cycle phenomena in cosmic ray intensity up to the recent solar cycle: Physics Letters B 664 (1), 31-34.
15. Steinhilber, F., Abreu, J. A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P. W., Mann, M., McCracken, K. G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F. (2012): 9,400 years of cosmic radiation and solar activity from ice cores and tree rings: Proceedings of the National Academy of Sciences 109 (16), 5967-5971.
16. Usoskin, I. G., Gallet, Y., Lopes, F., Kovaltsov, G. A., Hulot, G. (2016): Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima⋆: A&A 587, A150.
17. Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., Beer, J. (2004): Unusual activity of the Sun during recent decades compared to the previous 11,000 years: Nature 431, 1084-1087.
18. Kopp, G., Krivova, N., Wu, C. J., Lean, J. (2016): The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions: Solar Physics 291 (9), 2951-2965.
19. Egeland, R., Soon, W., Baliunas, S., Hall, J. C., Pevtsov, A. A., Bertello, L. (2017): The Mount Wilson Observatory S-index of the Sun: The Astrophysical Journal 835 (1), 25.
20. Clette, F., Svalgaard, L., Vaquero, J. M., Cliver, E. W. (2015): Revisiting the Sunspot Number, in Balogh, A., Hudson, H., Petrovay, K., and von Steiger, R., eds., The Solar Activity Cycle: Physical Causes and Consequences: New York, NY, Springer New York, S. 35-103.
21. Usoskin, I. G., Kovaltsov, G. A., Lockwood, M., Mursula, K., Owens, M., Solanki, S. K. (2016): A New Calibrated Sunspot Group Series Since 1749: Statistics of Active Day Fractions: Solar Physics 291 (9), 2685-2708.
22. Rahmstorf, S. (2017): Der globale CO2-Anstieg: die Fakten und die Bauernfängertricks: 29.7.2017, KlimaLounge, https://scilogs.spektrum.de/klimalounge/der-globale-co2-anstieg-die-fakten-und-die-bauernfaengertricks/
23. Zherebtsov, G. A., Kovalenko, V. A., Molodykh, S. I., Kirichenko, K. E. (2019): Solar variability manifestations in weather and climate characteristics: Journal of Atmospheric and Solar-Terrestrial Physics 182, 217-222.
24. Lüning, S., Vahrenholt, F. (2016): The Sun’s Role in Climate, Chapter 16 in „Evidence-Based Climate Science“ (Second Edition), Elsevier, S. 283-305.
25. Engels, S., van Geel, B. (2012): The effects of changing solar activity on climate: contributions from palaeoclimatological studies: J. Space Weather Space Clim. 2, A09.
26. Schwander, M., Rohrer, M., Brönnimann, S., Malik, A. (2017): Influence of solar variability on the occurrence of central European weather types from 1763 to 2009: Clim. Past 13 (9), 1199-1212.
27. Güttler, D., Wacker, L., Kromer, B., Friedrich, M., Synal, H. A. (2013): Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD – Progress on high precision AMS measurements: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 459-463.
28. Miyahara, H., Yokoyama, Y., Masuda, K. (2008): Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity: Earth and Planetary Science Letters 272, 290-295.
29. Taricco, C., Vivaldo, G., Alessio, S., Rubinetti, S., Mancuso, S. (2015): A high-resolution δ18O record and Mediterranean climate variability: Clim. Past 11 (3), 509-522.
30. Katsuki, K., Itaki, T., Khim, B.-K., Uchida, M., Tada, R. (2014): Response of the Bering Sea to 11-year solar irradiance cycles during the Bølling-Allerød: Geophysical Research Letters 41 (8), 2892-2898.
31. Morozova, A. L., Barlyaeva, T. V. (2016): The role of climatic forcings in variations of Portuguese temperature: A comparison of spectral and statistical methods: Journal of Atmospheric and Solar-Terrestrial Physics 149, 240-257.
32. Patterson, R. T., Chang, A. S., Prokoph, A., Roe, H. M., Swindles, G. T. (2013): Influence of the Pacific Decadal Oscillation, El Niño-Southern Oscillation and solar forcing on climate and primary productivity changes in the northeast Pacific: Quaternary International 310, 124-139.
33. Zhao, L., Wang, J.-S. (2014): Robust Response of the East Asian Monsoon Rainband to Solar Variability: Journal of Climate 27 (8), 3043-3051.
34. Wang, J.-S., Zhao, L. (2012): Statistical tests for a correlation between decadal variation in June precipitation in China and sunspot number: Journal of Geophysical Research: Atmospheres 117 (D23).
35. van Loon, H., Meehl, G. A. (2012): The Indian summer monsoon during peaks in the 11 year sunspot cycle: Geophys. Res. Lett. 39 (13), L13701.
36. Liu, Z., Yoshimura, K., Buenning, N. H., He, X. (2014): Solar cycle modulation of the Pacific–North American teleconnection influence on North American winter climate: Environmental Research Letters 9 (2), 024004.
37. Brugnara, Y., Brönnimann, S., Luterbacher, J., Rozanov, E. (2013): Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets: Atmos. Chem. Phys. 13 (13), 6275-6288.
38. Roy, I. (2018): Solar cyclic variability can modulate winter Arctic climate: Scientific Reports 8 (1), 4864.
39. Pazos, M., Mendoza, B. (2013): Landfalling Tropical Cyclones along the Eastern Pacific Coast between the Sixteenth and Twentieth Centuries: Journal of Climate 26 (12), 4219-4230.
40. Misios, S., Gray, L. J., Knudsen, M. F., Karoff, C., Schmidt, H., Haigh, J. D. (2019): Slowdown of the Walker circulation at solar cycle maximum: Proceedings of the National Academy of Sciences 116 (15), 7186-7191.
41. Wang, G., Yan, S., Qiao, F. (2015): Decadal variability of upper ocean heat content in the Pacific: Responding to the 11-year solar cycle: Journal of Atmospheric and Solar-Terrestrial Physics 135, 101-106.
42. Pinto Neto, O., Pinto, I. R. C. A., Pinto, O. (2013): The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009: Journal of Atmospheric and Solar-Terrestrial Physics 98, 12-21.
43. Maghrabi, A. H. (2019): Multi- decadal variations and periodicities of the precipitable water vapour (PWV) and their possible association with solar activity: Arabian Peninsula: Journal of Atmospheric and Solar-Terrestrial Physics 185, 22-28.
44. Brickner, I. (2019): Weinviertel: Von der Klimaerwärmung zur Mäuseplage: Der Standard, 2.8.2019, https://www.derstandard.at/story/2000106952286/von-der-klimaerwaermung-zur-maeuseplage
45. Aplin, K. L., Harrison, R. G. (2016): Determining solar effects in Neptune’s atmosphere: Nature Communications 7 (1), 11976.
46. Aplin, K. L., Harrison, R. G. (2017): Solar-Driven Variation in the Atmosphere of Uranus: Geophysical Research Letters 44 (24), 12,083-012,090.
47. Westlake, J. H., Waite, J. H., Bell, J. M., Perryman, R. (2014): Observed decline in Titan’s thermospheric methane due to solar cycle drivers: Journal of Geophysical Research: Space Physics 119 (10), 8586-8599.
48. Feynman, J., Ruzmaikin, A. (2014): The Centennial Gleissberg Cycle and its association with extended minima: Journal of Geophysical Research: Space Physics 119 (8), 6027-6041.
49. Seidenglanz, A., Prange, M., Varma, V., Schulz, M. (2012): Ocean temperature response to idealized Gleissberg and de Vries solar cycles in a comprehensive climate model: Geophys. Res. Lett. 39 (22), L22602.
50. Turney, C. S. M., Jones, R. T., Fogwill, C., Hatton, J., Williams, A. N., Hogg, A., Thomas, Z. A., Palmer, J., Mooney, S., Reimer, R. W. (2016): A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years: Clim. Past 12 (2), 189-200.
51. Galloway, J. M., Wigston, A., Patterson, R. T., Swindles, G. T., Reinhardt, E., Roe, H. M. (2013): Climate change and decadal to centennial-scale periodicities recorded in a late Holocene NE Pacific marine record: Examining the role of solar forcing: Palaeogeography, Palaeoclimatology, Palaeoecology 386, 669-689.
52. Novello, V. F., Cruz, F. W., Karmann, I., Burns, S. J., Stríkis, N. M., Vuille, M., Cheng, H., Lawrence Edwards, R., Santos, R. V., Frigo, E., Barreto, E. A. S. (2012): Multidecadal climate variability in Brazil’s Nordeste during the last 3000 years based on speleothem isotope records: Geophysical Research Letters 39 (23).
53. Li, X., Liang, J., Hou, J., Zhang, W. (2015): Centennial-scale climate variability during the past 2000 years on the central Tibetan Plateau: The Holocene 25 (6), 892-899.
54. Tiwari, R. K., Rajesh, R. (2014): Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China: Geophysical Research Letters 41 (9), 3103-3109.
55. Chu, G., Sun, Q., Xie, M., Lin, Y., Shang, W., Zhu, Q., Shan, Y., Xu, D., Rioual, P., Wang, L., Liu, J. (2014): Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China: Quaternary Science Reviews 102, 85-95.
56. Zhao, K., Wang, Y., Edwards, R. L., Cheng, H., Liu, D., Kong, X. (2015): A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years: Quaternary Science Reviews 122, 250-257.
57. Liu, D., Wang, Y., Cheng, H., Edwards, R. L., Kong, X. (2015): Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China: Quaternary Science Reviews 121, 1-10.
58. Ogurtsov, M. G., Oinonen, M. (2014): Evidence of the solar Gleissberg cycle in the nitrate concentration in polar ice: Journal of Atmospheric and Solar-Terrestrial Physics 109 (Supplement C), 37-42.
59. Ogurtsov, M., Lindholm, M., Jalkanen, R., Veretenenko, S. (2015): Evidence for the Gleissberg solar cycle at the high-latitudes of the Northern Hemisphere: Advances in Space Research 55 (5), 1285-1290.
60. Knudsen, M. F., Jacobsen, B. H., Riisager, P., Olsen, J., Seidenkrantz, M.-S. (2012): Evidence of Suess solar-cycle bursts in subtropical Holocene speleothem δ18O records: The Holocene 22 (5), 597-602.
61. Breitenmoser, P., Beer, J., Brönnimann, S., Frank, D., Steinhilber, F., Wanner, H. (2012): Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years: Palaeogeography, Palaeoclimatology, Palaeoecology 313–314 (0), 127-139.
62. Willard, D. A., Bernhardt, C. E., Korejwo, D. A., Meyers, S. R. (2005): Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: pollen-based climatic reconstruction: Global and Planetary Change 47, 17-35.
63. Springer, G. S., Rowe, H. D., Hardt, B., Edwards, R. L., Cheng, H. (2008): Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America: Geophysical Research Letters 35, 1-5.
64. Bernal, J. P., Cruz, F. W., Stríkis, N. M., Wang, X., Deininger, M., Catunda, M. C. A., Ortega-Obregón, C., Cheng, H., Edwards, R. L., Auler, A. S. (2016): High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil: Earth and Planetary Science Letters 450, 186-196.
65. Kilian, R., Lamy, F. (2012): A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S): Quaternary Science Reviews 53, 1-23.
66. Bush, M. B., Hansen, B. C. S., Rodbell, D. T., Seltzer, G. O., Young, K. R., León, B., Abbott, M. B., Silman, M. R., Gosling, W. D. (2005): A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru: Journal of Quaternary Science 20 (7‐8), 703-714.
67. Crosta, X., Debret, M., Denis, D., Courty, M. A., Ther, O. (2007): Holocene long- and short-term climate changes off Adélie Land, East Antarctica: Geochem. Geophys. Geosyst. 8 (11), 1-15.
68. Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Siep Talma, A., Tyson, P. D. (2003): Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa: Quaternary Science Reviews 22 (21–22), 2311-2326.
69. Zielhofer, C., Köhler, A., Mischke, S., Benkaddour, A., Mikdad, A., Fletcher, W. J. (2019): Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events: Clim. Past 15 (2), 463-475.
70. Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A. (2003): Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman: Science 300 (5626), 1737-1739.
71. Thamban, M., Kawahata, H., Rao, V. (2007): Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: Timing and implications: Journal of Oceanography 63 (6), 1009-1020.
72. Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., Li, X. (2005): The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate: Science 308, 854-857.
73. McGowan, H. A., Marx, S. K., Soderholm, J., Denholm, J. (2010): Evidence of solar and tropical-ocean forcing of hydroclimate cycles in southeastern Australia for the past 6500 years: Geophysical Research Letters 37 (10).
74. Fletcher, W. J., Debret, M., Goñi, M. F. S. (2013): Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies: The Holocene 23 (2), 153-166.
75. Mangini, A., Verdes, P., Spötl, C., Scholz, D., Vollweiler, N., Kromer, B. (2007): Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years: Geophysical Research Letters 34 (2), n/a-n/a.
76. Ojala, A. E. K., Launonen, I., Holmström, L., Tiljander, M. (2015): Effects of solar forcing and North Atlantic oscillation on the climate of continental Scandinavia during the Holocene: Quaternary Science Reviews 112, 153-171.
77. Evangelista, H., Gurgel, M., Sifeddine, A., Rigozo, N. R., Boussafir, M. (2014): South Tropical Atlantic anti-phase response to Holocene Bond Events: Palaeogeography, Palaeoclimatology, Palaeoecology 415, 21-27.
78. Voigt, I., Chiessi, C. M., Prange, M., Mulitza, S., Groeneveld, J., Varma, V., Henrich, R. (2015): Holocene shifts of the southern westerlies across the South Atlantic: Paleoceanography 30 (2), 39-51.
79. Arz, H. W., Gerhardt, S., Pätzold, J., Röhl, U. (2001): Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene: Geology 29 (3), 239-242.
80. Kemp, J., Radke, L. C., Olley, J., Juggins, S., De Deckker, P. (2012): Holocene lake salinity changes in the Wimmera, southeastern Australia, provide evidence for millennial-scale climate variability: Quaternary Research 77 (1), 65-76.
81. Tejedor, E., Saz, M. Á., Cuadrat, J. M., Esper, J., de Luis, M. (2017): Temperature variability in the Iberian Range since 1602 inferred from tree-ring records: Clim. Past 13 (2), 93-105.
82. Santos, J. A., Carneiro, M. F., Correia, A., Alcoforado, M. J., Zorita, E., Gómez-Navarro, J. J. (2015): New insights into the reconstructed temperature in Portugal over the last 400 years: Clim. Past 11 (6), 825-834.
83. Büntgen, U., Kyncl, T., Ginzler, C., Jacks, D. S., Esper, J., Tegel, W., Heussner, K.-U., Kyncl, J. (2013): Filling the Eastern European gap in millennium-long temperature reconstructions: Proceedings of the National Academy of Sciences 110 (5), 1773-1778.
84. Shi, F., Yang, B., Von Gunten, L. (2012): Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium: Science China Earth Sciences 55 (12), 2058-2067.
85. Krusic, P. J., Cook, E. R., Dukpa, D., Putnam, A. E., Rupper, S., Schaefer, J. (2015): Six hundred thirty-eight years of summer temperature variability over the Bhutanese Himalaya: Geophysical Research Letters 42 (8), 2988-2994.
86. Luckman, B. H., Wilson, R. J. S. (2005): Summer temperatures in the Canadian Rockies during the last millennium: a revised record: Climate Dynamics 24 (2), 131-144.
87. Moffa-Sanchez, P., Born, A., Hall, I. R., Thornalley, D. J. R., Barker, S. (2014): Solar forcing of North Atlantic surface temperature and salinity over the past millennium: Nature Geosci 7 (4), 275-278.
88. Kuhnert, H., Mulitza, S. (2011): Multidecadal variability and late medieval cooling of near-coastal sea surface temperatures in the eastern tropical North Atlantic: Paleoceanography 26 (4), PA4224.
89. Wiles, G. C., Solomina, O., D’Arrigo, R., Anchukaitis, K. J., Gensiarovsky, Y. V., Wiesenberg, N. (2015): Reconstructed summer temperatures over the last 400 years based on larch ring widths: Sakhalin Island, Russian Far East: Climate Dynamics 45 (1), 397-405.
90. Cook, E., Bird, T., Peterson, M., Barbetti, M., Buckley, B., D’Arrigo, R., Francey, R. (1992): Climatic change over the last millennium in Tasmania reconstructed from tree-rings: The Holocene 2 (3), 205-217.
91. Gao, Y., Yang, L., Yang, W., Wang, Y., Xie, Z., Sun, L. (2019): Dynamics of penguin population size and food availability at Prydz Bay, East Antarctica, during the last millennium: A solar control: Palaeogeography, Palaeoclimatology, Palaeoecology 516, 220-231.
92. He, Y., Liu, W., Zhao, C., Wang, Z., Wang, H., Liu, Y., Qin, X., Hu, Q., An, Z., Liu, Z. (2013): Solar influenced late Holocene temperature changes on the northern Tibetan Plateau: Chinese Science Bulletin 58 (9), 1053-1059.
93. Bradley, R. (2000): Email: 10.7.2000, http://di2.nu/foia/foia2011/mail/0207.txt
94. Osterberg, E. C., Mayewski, P. A., Fisher, D. A., Kreutz, K. J., Maasch, K. A., Sneed, S. B., Kelsey, E. (2014): Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 A.D: Journal of Geophysical Research: Atmospheres 119 (19), 11,189-111,204.
95. Dong, X., Su, T.-H., Wang, J., Lin, R.-P. (2014): Decadal Variation of the Aleutian Low-Icelandic Low Seesaw Simulated by a Climate System Model (CAS-ESM-C): Atmospheric and Oceanic Science Letters 7 (2), 110-114.
96. Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S., Sinninghe Damsté, J. S. (2012): A mid-Holocene thermal maximum at the end of the African Humid Period: Earth and Planetary Science Letters 351–352, 95-104.
97. Zielhofer, C., Fletcher, W. J., Mischke, S., De Batist, M., Campbell, J. F. E., Joannin, S., Tjallingii, R., El Hamouti, N., Junginger, A., Stele, A., Bussmann, J., Schneider, B., Lauer, T., Spitzer, K., Strupler, M., Brachert, T., Mikdad, A. (2017): Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years: Quaternary Science Reviews 157, 29-51.
98. Noon, P. E., Leng, M. J., Jones, V. J. (2003): Oxygen-isotope (δ18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica: The Holocene 13 (2), 251-263.
99. Steinhilber, F., Beer, J., Fröhlich, C. (2009): Total solar irradiance during the Holocene: Geophysical Research Letters 36 (L19704).
100. Ljungqvist, F. C. (2010): A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia: Geografiska Annaler: Series A 92 (3), 339-351.
101. Czymzik, M., Muscheler, R., Brauer, A. (2016): Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales: Clim. Past 12 (3), 799-805.
102. Peña, J. C., Schulte, L., Badoux, A., Barriendos, M., Barrera-Escoda, A. (2015): Influence of solar forcing, climate variability and modes of low-frequency atmospheric variability on summer floods in Switzerland: Hydrol. Earth Syst. Sci. 19 (9), 3807-3827.
103. Nitka, W., Burnecki, K. (2019): Impact of solar activity on precipitation in the United States: Physica A: Statistical Mechanics and its Applications 527, 121387.
104. Jones, M. D., Metcalfe, S. E., Davies, S. J., Noren, A. (2015): Late Holocene climate reorganisation and the North American Monsoon: Quaternary Science Reviews 124, 290-295.
105. Sun, J., Liu, Y. (2012): Tree ring based precipitation reconstruction in the south slope of the middle Qilian Mountains, northeastern Tibetan Plateau, over the last millennium: J. Geophys. Res. 117 (D8), D08108.
106. Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., Novello, V. F. (2012): A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia: Climate of the Past 8, 1309-1321.
107. Kodera, K. (2004): Solar influence on the Indian Ocean Monsoon through dynamical processes: Geophysical Research Letters 31 (24).
108. Liu, D., Wang, Y., Cheng, H., Edwards, R. L., Kong, X. (2017): Remote vs. local control on the Preboreal Asian hydroclimate and soil processes recorded by an annually-laminated stalagmite from Daoguan Cave, southern China: Quaternary International 452, 79-90.
109. Wallace, M. G. (2019): Application of lagged correlations between solar cycles and hydrosphere components towards sub-decadal forecasts of streamflows in the Western USA: Hydrological Sciences Journal 64 (2), 137-164.
110. Hennekam, R., Jilbert, T., Schnetger, B., de Lange, G. J. (2014): Solar forcing of Nile discharge and sapropel S1 formation in the early to middle Holocene eastern Mediterranean: Paleoceanography 29 (5), 343-356.
111. Mauas, P. J. D., Buccino, A. P., Flamenco, E. (2011): Long-term solar activity influences on South American rivers: Journal of Atmospheric and Solar-Terrestrial Physics 73 (2-3), 377-382.
112. Antico, A., Torres, M. E. (2015): Evidence of a decadal solar signal in the Amazon River: 1903 to 2013: Geophysical Research Letters 42 (24), 10,782-710,787.
113. Watras, C. J., Read, J. S., Holman, K. D., Liu, Z., Song, Y.-Y., Watras, A. J., Morgan, S., Stanley, E. H. (2014): Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications: Geophysical Research Letters 41 (2), 456-462.
114. Kaftan, V., Komitov, B., Lebedev, S. (2018): Analysis of sea level changes in the Caspian Sea related to Cosmo-geophysical processes based on satellite and terrestrial data: Geodesy and Geodynamics 9 (6), 449-455.
115. Naderi Beni, A., Lahijani, H., Mousavi Harami, R., Arpe, K., Leroy, S. A. G., Marriner, N., Berberian, M., Andrieu-Ponel, V., Djamali, M., Mahboubi, A., Reimer, P. J. (2013): Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea: Clim. Past 9 (4), 1645-1665.
116. Stager, C. J., Ryves, D., Cumming, F. B., Meeker, D. L., Beer, J. (2005): Solar variability and the levels of Lake Victoria, East Africa, during the last millenium: Journal of Paleolimnology 33 (2), 243-251.
117. Niranjankumar, K., Ramkumar, T. K., Krishnaiah, M. (2011): Vertical and lateral propagation characteristics of intraseasonal oscillation from the tropical lower troposphere to upper mesosphere: Journal of Geophysical Research 116, 1-10.
118. Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., Loon, H. v. (2009): Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing: Science 325, 1114-1118.
119. Ineson, S., Scaife, A. A., Knight, J. R., Manners, J. C., Dunstone, N. J., Gray, L. J., Haigh, J. D. (2011): Solar forcing of winter climate variability in the Northern Hemisphere: Nature Geoscience 4, 753-757.
120. Kodera, K. (2006): The role of dynamics in solar forcing: Space Science Reviews 125, 319-330.
121. Gray, L. J., Ball, W., Misios, S. (2017): Solar influences on climate over the Atlantic / European sector: AIP Conference Proceedings 1810 (1), 020002.
122. Wang, W., Matthes, K., Tian, W., Park, W., Shangguan, M., Ding, A. (2019): Solar impacts on decadal variability of tropopause temperature and lower stratospheric (LS) water vapour: a mechanism through ocean–atmosphere coupling: Climate Dynamics 52 (9), 5585-5604.
123. Kodera, K., Thiéblemont, R., Yukimoto, S., Matthes, K. (2016): How can we understand the global distribution of the solar cycle signal on the Earth’s surface?: Atmos. Chem. Phys. 16 (20), 12925-12944.
124. Varma, V., Prange, M., Lamy, F., Merkel, U., Schulz, M. (2011): Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene: Clim. Past 7, 339-347.
125. Svensmark, H. (2000): Cosmic rays and earth’s climate: Space Science Reviews 93, 155-166.
126. Svensmark, H., Friis-Christensen, E. (1997): Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships: Journal of Atmospheric and Solar-Terrestrial Physics 59 (11), 1225-1232.
127. Svensmark, H., Pedersen, J. O. P., Marsh, N. D., Enghoff, M. B. (2007): Experimental evidence for the role of ions in particle nucleation under atmospheric conditions: Proc. R. Soc. A 463, 385-396.
128. Svensmark, H., Friis-Christensen, E. (2007): Reply to Lockwood and Fröhlich – The persistent role of the Sun in climate forcing: Danish National Space Center, Scientific Report 3 (2007).
129. Svensmark, H. (2007): Cosmoclimatology: A New Theory Emerges: Astronomy & Geophysics 48, 1.18-11.24.
130. Svensmark, J., Enghoff, M. B., Shaviv, N. J., Svensmark, H. (2016): The response of clouds and aerosols to cosmic ray decreases: Journal of Geophysical Research: Space Physics 121 (9), 8152-8181.
131. Yu, F., Luo, G. (2014): Effect of solar variations on particle formation and cloud condensation nuclei: Environ. Res. Lett. 9.
132. Voiculescu, M., Usoskin, I. (2012): Persistent solar signatures in cloud cover: spatial and temporal analysis: Environ. Res. Lett. 7.
133. National Research Council (2012): The Effects of Solar Variability on Earth’s Climate – A Workshop Report, Washington, DC, National Academies Press, 58 p.:
134. NASA Science News (2013): Solar Variability and Terrestrial Climate: 8.1.2013, https://science.nasa.gov/science-news/science-at-nasa/2013/08jan_sunclimate/
135. Veretenenko, S., Ogurtsov, M., Manifestation and Possible Reasons of ~60-Year Climatic Cycle in Correlation Links Between Solar Activity and Lower Atmosphere Circulation, Cham, 2020, Springer International Publishing, p. 341-352.
136. Veretenenko, S., Ogurtsov, M. (2019): Manifestation and possible reasons of ∼60-year oscillations in solar-atmospheric links: Advances in Space Research 64 (1), 104-116.
137. Ma, L., Yin, Z. (2017): Possible solar modulation of pacific decadal oscillation: Solar System Research 51 (5), 417-421.
138. Velasco, V. M., Mendoza, B. (2008): Assessing the relationship between solar activity and some large scale climatic phenomena: Advances in Space Research 42 (5), 866-878.
139. Yamakawa, S., Inoue, M., Suppiah, R. (2016): Relationships between solar activity and variations in SST and atmospheric circulation in the stratosphere and troposphere: Quaternary International 397, 289-299.
140. Otterå, O. H., Bentsen, M., Drange, H., Suo, L. (2010): External forcing as a metronome for Atlantic multidecadal variability: nature geoscience 3, 688-694.
141. Muthers, S., Raible, C. C., Rozanov, E., Stocker, T. F. (2016): Response of the AMOC to reduced solar radiation – the modulating role of atmospheric chemistry: Earth Syst. Dynam. 7 (4), 877-892.
142. Malik, A., Brönnimann, S., Perona, P. (2018): Statistical link between external climate forcings and modes of ocean variability: Climate Dynamics 50 (9), 3649-3670.
143. Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M.-S., Olsen, J. (2014): Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age: Nature Communications 5, 3323.
144. Wang, J., Yang, B., Ljungqvist, F. C., Luterbacher, J., Osborn, Timothy J., Briffa, K. R., Zorita, E. (2017): Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years: Nature Geoscience 10, 512.
145. Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K., Hansen, F. (2015): Solar forcing synchronizes decadal North Atlantic climate variability: Nature Communications 6, 8268.
146. Kodera, K. (2002): Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO: Geophysical Research Letters 29 (8), 59-51-59-54.
147. Helama, S., Holopainen, J. (2012): Spring temperature variability relative to the North Atlantic Oscillation and sunspots — A correlation analysis with a Monte Carlo implementation: Palaeogeography, Palaeoclimatology, Palaeoecology 326–328 (0), 128-134.
148. Scaife, A. A., Ineson, S., Knight, J. R., Gray, L., Kodera, K., Smith, D. M. (2013): A mechanism for lagged North Atlantic climate response to solar variability: Geophysical Research Letters 40 (2), 434-439.
149. Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman, S., Butchart, N., Knight, J., Sutton, R., Kodera, K. (2013): A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns: Journal of Geophysical Research: Atmospheres 118 (24), 13,405-413,420.
150. Andrews, M. B., Knight, J. R., Gray, L. J. (2015): A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009: Environmental Research Letters 10 (5), 054022.
151. Roy, I., Asikainen, T., Maliniemi, V., Mursula, K. (2016): Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate: Journal of Atmospheric and Solar-Terrestrial Physics 149, 167-179.
152. Zhou, L., Tinsley, B., Huang, J. (2014): Effects on winter circulation of short and long term solar wind changes: Advances in Space Research 54 (12), 2478-2490.
153. Gray, L. J., Woollings, T. J., Andrews, M., Knight, J. (2016): Eleven‐year solar cycle signal in the NAO and Atlantic/European blocking: Quarterly Journal of the Royal Meteorological Society 142 (698), 1890-1903.
154. Sjolte, J., Sturm, C., Adolphi, F., Vinther, B. M., Werner, M., Lohmann, G., Muscheler, R. (2018): Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction: Climate of the Past 14, 1179-1194.
155. Sfîcă, L., Voiculescu, M., Huth, R. (2015): The influence of solar activity on action centres of atmospheric circulation in North Atlantic: Ann. Geophys. 33 (2), 207-215.
156. Ma, H., Chen, H., Gray, L., Zhou, L., Li, X., Wang, R., Zhu, S. (2018): Changing response of the North Atlantic/European winter climate to the 11 year solar cycle: Environmental Research Letters 13 (3), 034007.
157. van Loon, H., Brown, J., Milliff, R. F. (2012): Trends in sunspots and North Atlantic sea level pressure: J. Geophys. Res. 117 (D7), D07106.
158. Georgieva, K., Kirov, B., Koucká Knížová, P., Mošna, Z., Kouba, D., Asenovska, Y. (2012): Solar influences on atmospheric circulation: Journal of Atmospheric and Solar-Terrestrial Physics 90–91, 15-25.
159. Reichler, T., Kim, J., Manzini, E., Kröger, J. (2012): A stratospheric connection to Atlantic climate variability: Nature Geoscience 5, 783-787.
160. Ball, W. T., Haigh, J. D., Rozanov, E. V., Kuchar, A., Sukhodolov, T., Tummon, F., Shapiro, A. V., Schmutz, W. (2016): High solar cycle spectral variations inconsistent with stratospheric ozone observations: Nature Geoscience 9 (3), 206-209.
161. Salas, I., Herrera, C., Luque, J. A., Delgado, J., Urrutia, J., Jordan, T. (2016): Recent climatic events controlling the hydrological and the aquifer dynamics at arid areas: The case of Huasco River watershed, northern Chile: Science of The Total Environment 571 (Supplement C), 178-194.
162. Hassan, D., Iqbal, A., Ahmad Hassan, S., Abbas, S., Ansari, M. R. K. (2016): Sunspots and ENSO relationship using Markov method: Journal of Atmospheric and Solar-Terrestrial Physics 137 (Supplement C), 53-57.
163. Yan, H., Sun, L., Wang, Y., Huang, W., Qiu, S., Yang, C. (2011): A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies: Nature Geoscience 4, 611.
164. Nuzhdina, M. A. (2002): Connection between ENSO phenomena and solar and geomagnetic activity: Natural Hazards and Earth System Sciences 2, 83-89.
165. Mehta, V. M., Lau, K. M. (1997): Influence of solar irradiance on the Indian Monsoon-ENSO relationship at decadal-multidecadal time scales: Geophysical Research Letters 24 (2), 159-162.
166. Li, T., Calvo, N., Yue, J., Dou, X., Russell III, J. M., Mlynczak, M. G., She, C.-Y., Xue, X. (2013): Influence of El Niño-Southern Oscillation in the mesosphere: Geophysical Research Letters 40 (12), 3292-3296.
167. Kuroda, Y., Kodera, K. (2005): Solar cycle modulation of the Southern Annular Mode: Geophysical Research Letters 32 (13), n/a-n/a.
168. Roy, I., Haigh, J. D. (2011): The influence of solar variability and the quasi-biennial oscillation on lower atmospheric temperatures and sea level pressure: Atmos. Chem. Phys. 11 (22), 11679-11687.
169. Haigh, J. D., Roscoe, H. K. (2006): Solar influences on polar modes of variability: Meteorologische Zeitschrift 15 (3), 371-378.
170. Arblaster, J. M., Meehl, G. A. (2006): Contributions of External Forcings to Southern Annular Mode Trends: Journal of Climate 19 (12), 2896-2905.
171. Kuroda, Y., Shibata, K. (2006): Simulation of solar-cycle modulation of the Southern Annular Mode using a chemistry-climate model: Geophysical Research Letters 33 (5), n/a-n/a.
172. Mayewski, P. A., Carleton, A. M., Birkel, S. D., Dixon, D., Kurbatov, A. V., Korotkikh, E., McConnell, J., Curran, M., Cole-Dai, J., Jiang, S., Plummer, C., Vance, T., Maasch, K. A., Sneed, S. B., Handley, M. (2017): Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes: Quaternary Science Reviews 155 (Supplement C), 50-66.
173. Petrick, C., Matthes, K., Dobslaw, H., Thomas, M. (2012): Impact of the solar cycle and the QBO on the atmosphere and the ocean: Journal of Geophysical Research: Atmospheres 117 (D17), n/a-n/a.
174. Kuroda, Y., Deushi, M., Shibata, K. (2007): Role of solar activity in the troposphere-stratosphere coupling in the Southern Hemisphere winter: Geophysical Research Letters 34 (21), n/a-n/a.
175. Hood, L., Schimanke, S., Spangehl, T., Bal, S., Cubasch, U. (2013): The Surface Climate Response to 11-Yr Solar Forcing during Northern Winter: Observational Analyses and Comparisons with GCM Simulations: Journal of Climate 26 (19), 7489-7506.
176. Gusev, A. A., Martin, I. M. (2012): Possible evidence of the resonant influence of solar forcing on the climate system: Journal of Atmospheric and Solar-Terrestrial Physics 80 (0), 173-178.
177. Veretenenko, S., Ogurtsov, M. (2016): Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability: Journal of Atmospheric and Solar-Terrestrial Physics 149, 207-218.
178. Veretenenko, S., Ogurtsov, M., Lindholm, M., Jalkanen, R. (2018): Galactic Cosmic Rays and Low Clouds: Possible Reasons for Correlation Reversal, in Szadkowski, Z., ed., Cosmic Rays, IntechOpen, https://www.intechopen.com/books/cosmic-rays/galactic-cosmic-rays-and-low-clouds-possible-reasons-for-correlation-reversal, S. 79-98.
179. Yukimoto, S., Kodera, K., Thiéblemont, R. (2017): Delayed North Atlantic Response to Solar Forcing of the Stratospheric Polar Vortex: SOLA 13, 53-58.
180. Hood, L. L. (2016): Lagged response of tropical tropospheric temperature to solar ultraviolet variations on intraseasonal time scales: Geophysical Research Letters 43 (8), 4066-4075.
181. Dobrica, V., Pirloaga, R., Stefan, C., Demetrescu, C. (2018): Inferring geoeffective solar variability signature in stratospheric and tropospheric Northern Hemisphere temperatures: Journal of Atmospheric and Solar-Terrestrial Physics 180, 137-147.
182. Ma, L. H., Han, Y. B., Yin, Z. Q. (2009): Influence of the 11-Year Solar Cycle on Variations of Cosmic Ray Intensity: Solar Physics 255, 187-191.
183. Ratnam, M. V., Santhi, Y. D., Kishore, P., Rao, S. V. B. (2014): Solar cycle effects on Indian summer monsoon dynamics: Journal of Atmospheric and Solar-Terrestrial Physics 121, Part B, 145-156.
184. Usoskin, I. G., Schüssler, M., Solanki, S. K., Mursula, K. (2005): Solar activity over the last 1150 years: does it correlate with climate?: Proceedings of the 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, held 5-9 July, 2004 in Hamburg, Germany, 19-22.
185. Wurtzel, J. B., Black, D. E., Thunell, R. C., Peterson, L. C., Tappa, E. J., Rahman, S. (2013): Mechanisms of southern Caribbean SST variability over the last two millennia: Geophysical Research Letters 40 (22), 5954-5958.
186. Fang, K., Chen, D., Ilvonen, L., Pasanen, L., Holmström, L., Seppä, H., Huang, G., Ou, T., Linderholm, H. (2019): Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis: Quaternary Science Reviews 215, 293-307.
187. Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P., Lascaratos, A. (2012): Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability: Ocean Dynamics 62 (1), 13-30.
188. Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D. B., Xoplaki, E. (2001): North Atlantic Oscillation – Concepts And Studies: Surveys in Geophysics 22 (4), 321-381.
189. Ríos-Cornejo, D., Penas, Á., Álvarez-Esteban, R., del Río, S. (2015): Links between teleconnection patterns and mean temperature in Spain: Theoretical and Applied Climatology 122 (1), 1-18.
190. Jalali, B., Sicre, M.-A., Klein, V., Schmidt, S., Maselli, V., Lirer, F., Bassetti, M.-A., Toucanne, S., Jorry, S. J., Insinga, D. D., Petrosino, P., Châles, F. (2018): Deltaic and Coastal Sediments as Recorders of Mediterranean Regional Climate and Human Impact Over the Past Three Millennia: Paleoceanography and Paleoclimatology 33 (6), 579-593.
191. Lüning, S., Schulte, L., Garcés-Pastor, S., Danladi, I. B., Gałka, M. (2019): The Medieval Climate Anomaly in the Mediterranean Region: Paleoceanography and Paleoclimatology 34 (10), 1625-1649.
192. Roberts, N., Moreno, A., Valero-Garcés, B. L., Corella, J. P., Jones, M., Allcock, S., Woodbridge, J., Morellón, M., Luterbacher, J., Xoplaki, E., Türkeş, M. (2012): Palaeolimnological evidence for an east–west climate see-saw in the Mediterranean since AD 900: Global and Planetary Change 84, 23-34.
193. Lüning, S., Gałka, M., Vahrenholt, F. (2019): The Medieval Climate Anomaly in Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology 532, 109251.
194. Rampelotto, P. H., Rigozo, N. R., da Rosa, M. B., Prestes, A., Frigo, E., Souza Echer, M. P., Nordemann, D. J. R. (2012): Variability of rainfall and temperature (1912–2008) parameters measured from Santa Maria (29°41′S, 53°48′W) and their connections with ENSO and solar activity: Journal of Atmospheric and Solar-Terrestrial Physics 77 (0), 152-160.
195. Lu, H., Gray, L. J., White, I. P., Bracegirdle, T. J. (2017): Stratospheric Response to the 11-Yr Solar Cycle: Breaking Planetary Waves, Internal Reflection, and Resonance: Journal of Climate 30 (18), 7169-7190.
196. Kossobokov, V., Le Mouël, J., Courtillot, V. (2019): On the Diversity of Long-Term Temperature Responses to Varying Levels of Solar Activity at Ten European Observatories: Atmospheric and Climate Sciences 9, 498-526.
197. Le Mouël, J.-L., Lopes, F., Courtillot, V. (2019): A Solar Signature in Many Climate Indices: Journal of Geophysical Research: Atmospheres 124 (5), 2600-2619.
198. Feulner, G. (2011): Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions?: Geophysical Research Letters 38, 1-4.
199. IPCC (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 1535 p.:
200. IPCC (2018): Special Report on global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways: http://www.ipcc.ch/report/sr15/
201. Temperatur: HadCRUT4. Sonne: Dargestellte Punkte entsprechen den jeweiligen Maxima der solaren Schwabe-Zyklen gemäß NRLTSI2-Datensatz in Kopp et al. 2016 (dort: Abbildung 2a). Kopp, G., Krivova, N., Wu, C. J., Lean, J. (2016): The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions: Solar Physics 291 (9), 2951-2965.