I. MODERNE ERWÄRMUNG IM LICHT DER KLIMAGESCHICHTE

3. Noch nie war es so warm wie heute: Stimmt das?

1. Robert, F., Chaussidon, M. (2006): A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts: Nature 443 (7114), 969-972.

2. Knauth, L. P. (2005): Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution: Palaeogeography, Palaeoclimatology, Palaeoecology 219 (1), 53-69.

3. Walker, G. (2004): Snowball Earth, Bloomsbury Publishing.

4. Scotese, C. (2015): Phanerozoic Global Temperature Curve: PALEOMAP Project, Evanston, Illinois, https://www.researchgate.net/publication/275280922_Phanerozoic_Global_Temperature_Curve

5. Mills, B. J. W., Krause, A. J., Scotese, C. R., Hill, D. J., Shields, G. A., Lenton, T. M. (2019): Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day: Gondwana Research 67, 172-186.

6. Berner, R. A., Kothavala, Z. (2001): Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic Time: American Journal of Science 301 (2), 182-204.

7. Barral, A., Gomez, B., Fourel, F., Daviero-Gomez, V., Lécuyer, C. (2017): CO2 and temperature decoupling at the million-year scale during the Cretaceous Greenhouse: Scientific Reports 7 (1), 8310.

8. Royer, D. L. (2006): CO2-forced climate thresholds during the Phanerozoic: Geochimica et Cosmochimica Acta 70 (23), 5665-5675.

9. Came, R. E., Eiler, J. M., Veizer, J., Azmy, K., Brand, U., Weidman, C. R. (2007): Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era: Nature 449 (7159), 198-201.

10. Davis, W. J. (2017): The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years: Climate 5 (4), 76.

11. Shaviv, N. J., Veizer, J. (2003): Celestial driver of Phanerozoic climate?: GSA Today 7, 4-10.

12. Veizer, J., Godderis, Y., François, L. M. (2000): Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon: Nature 408 (6813), 698-701.

13. Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M., Fischer, H. (2012): Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores: Science 336 (6082), 711-714.

14. Hogg, A. M. (2008): Glacial cycles and carbon dioxide: A conceptual model: Geophysical Research Letters 35 (1).

15. Turney, C. S. M., Jones, R. T. (2010): Does the Agulhas Current amplify global temperatures during super-interglacials?: Journal of Quaternary Science 25 (6), 839-843.

16. Lüning, S., Vahrenholt, F. (2017): Paleoclimatological Context and Reference Level of the 2°C and 1.5°C Paris Agreement Long-Term Temperature Limits: Frontiers in Earth Science 5 (104).

17. Ljungqvist, F. C. (2011): The Spatio-Temporal Pattern of the Mid-Holocene Thermal Maximum: Geografie–Sborník ČGS 116 (2), 91-110.

18. Loomis, S. E., Russell, J. M., Lamb, H. F. (2015): Northeast African temperature variability since the Late Pleistocene: Palaeogeography, Palaeoclimatology, Palaeoecology 423, 80-90.

19. Cheddadi, R., Lamb, H. F., Guiot, J., van der Kaars, S. (1998): Holocene climatic change in Morocco: a quantitative reconstruction from pollen data: Climate Dynamics 14 (12), 883-890.

20. Andreev, A. A., Tarasov, P. E., Ilyashuk, B. P., Ilyashuk, E. A., Cremer, H., Hermichen, W.-D., Wischer, F., Hubberten, H.-W. (2005): Holocene environmental history recorded in Lake Lyadhej-To sediments, Polar Urals, Russia: Palaeogeography, Palaeoclimatology, Palaeoecology 223 (3), 181-203.

21. Peterse, F., Prins, M. A., Beets, C. J., Troelstra, S. R., Zheng, H., Gu, Z., Schouten, S., Damsté, J. S. S. (2011): Decoupled warming and monsoon precipitation in East Asia over the last deglaciation: Earth and Planetary Science Letters 301 (1), 256-264.

22. Wilmshurst, J. M., McGlone, M. S., Leathwick, J. R., Newnham, R. M. (2007): A pre-deforestation pollen-climate calibration model for New Zealand and quantitative temperature reconstructions for the past 18 000 years BP: Journal of Quaternary Science 22 (5), 535-547.

23. Woltering, M., Atahan, P., Grice, K., Heijnis, H., Taffs, K., Dodson, J. (2014): Glacial and Holocene terrestrial temperature variability in subtropical east Australia as inferred from branched GDGT distributions in a sediment core from Lake McKenzie: Quaternary Research 82 (1), 132-145.

24. Wooller, M. J., Pohlman, J. W., Gaglioti, B. V., Langdon, P., Jones, M., Walter Anthony, K. M., Becker, K. W., Hinrichs, K.-U., Elvert, M. (2012): Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years: Journal of Paleolimnology 48 (1), 27-42.

25. Briner, J. P., Michelutti, N., Francis, D. R., Miller, G. H., Axford, Y., Wooller, M. J., Wolfe, A. P. (2006): A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada: Quaternary Research 65 (3), 431-442.

26. Massaferro, J., Larocque-Tobler, I. (2013): Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina: Ecological Indicators 24, 201-210.

27. Millo, C., Strikis, N. M., Vonhof, H. B., Deininger, M., da Cruz, F. W., Wang, X., Cheng, H., Lawrence Edwards, R. (2017): Last glacial and Holocene stable isotope record of fossil dripwater from subtropical Brazil based on analysis of fluid inclusions in stalagmites: Chemical Geology 468, 84-96.

28. Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V. Y., Mosley-Thompson, E., Petit, J.-R., Steig, E. J., Stievenard, M., Vaikmae, R. (2000): Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records: Quaternary Research 54 (3), 348-358.

29. Steig, E. J., Hart, C. P., White, J. W. C., Cunningham, W. L., Davis, M. D., Saltzman, E. S. (1998): Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka: Annals of Glaciology 27, 305-310.

30. Carter, V. A., Moravcová, A., Chiverrell, R. C., Clear, J. L., Finsinger, W., Dreslerová, D., Halsall, K., Kuneš, P. (2018): Holocene-scale fire dynamics of central European temperate spruce-beech forests: Quaternary Science Reviews 191, 15-30.

31. Heiri, O., Ilyashuk, B., Millet, L., Samartin, S., Lotter, A. F. (2015): Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region: The Holocene 25 (1), 137-149.

32. Kühl, N., Moschen, R. (2012): A combined pollen and δ18OSphagnum record of mid-Holocene climate variability from Dürres Maar (Eifel, Germany): The Holocene 22 (10), 1075-1085.

33. Larsen, N. K., Kjær, K. H., Lecavalier, B., Bjørk, A. A., Colding, S., Huybrechts, P., Jakobsen, K. E., Kjeldsen, K. K., Knudsen, K.-L., Odgaard, B. V., Olsen, J. (2015): The response of the southern Greenland ice sheet to the Holocene thermal maximum: Geology 43 (4), 291-294.

34. Nicolussi, K., Patzelt, G. (2000): Discovery of early Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria: The Holocene 10 (2), 191-199.

35. Kerwin, M. W., Overpeck, J. T., Webb, R. S., DeVernal, A., Rind, D. H., Healy, R. J. (1999): The role of oceanic forcing in mid-Holocene northern hemisphere climatic change: Paleoceanography 14 (2), 200-210.

36. Spear, R. W. (1993): The palynological record of Late-Quaternary arctic tree-line in northwest Canada: Review of Palaeobotany and Palynology 79 (1), 99-111.

37. Niemann, H., Haberzettl, T., Behling, H. (2009): Holocene climate variability and vegetation dynamics inferred from the (11700 cal. yr BP) Laguna Rabadilla de Vaca sediment record, southeastern Ecuadorian Andes: The Holocene 19 (2), 307-316.

38. http://t1p.de/htm

39. Kurek, J., Cwynar, L. C., Vermaire, J. C. (2017): A late Quaternary paleotemperature record from Hanging Lake, northern Yukon Territory, eastern Beringia: Quaternary Research 72 (2), 246-257.

40. Irvine, F., Cwynar, L. C., Vermaire, J. C., Rees, A. B. H. (2012): Midge-inferred temperature reconstructions and vegetation change over the last ~15,000 years from Trout Lake, northern Yukon Territory, eastern Beringia: Journal of Paleolimnology 48 (1), 133-146.

41. Porter, T. J., Schoenemann, S. W., Davies, L. J., Steig, E. J., Bandara, S., Froese, D. G. (2019): Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum: Nature Communications 10 (1), 1631.

42. Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K., Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., Wolfe, B. B. (2004): Holocene thermal maximum in the western Arctic (0–180°W): Quaternary Science Reviews 23 (5), 529-560.

43. Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J. S., Luterbacher, J., Holzkämpe, S., Fischer, N., Wagner, S., Nievergelt, D., Verstege, A., Büntgen, U. (2012): Orbital forcing of tree-ring data: Nature Climate Change 2, 862-866.

44. Chen, L., Zonneveld, K. A. F., Versteegh, G. J. M. (2011): Short term climate variability during “Roman Classical Period” in the eastern Mediterranean: Quaternary Science Reviews 30 (27–28), 3880-3891.

45. Holzhauser, H., Magny, M., Zumbuühl, H. J. (2005): Glacier and lake-level variations in west-central Europe over the last 3500 years: The Holocene 15 (6), 789-801.

46. Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S., Sinninghe Damsté, J. S. (2012): A mid-Holocene thermal maximum at the end of the African Humid Period: Earth and Planetary Science Letters 351–352, 95-104.

47. Meisel, S., Emeis, K.-C., Struck, U., Kristen, I. (2011): Nutrient regime and upwelling in the northern Benguela since the middle Holocene in a global context – a multi-proxy approach: Fossil Record 14 (2), 171-193.

48. Yan, H., Soon, W., Wang, Y. (2015): A composite sea surface temperature record of the northern South China Sea for the past 2500years: A unique look into seasonality and seasonal climate changes during warm and cold periods: Earth-Science Reviews 141, 122-135.

49. Aichner, B., Feakins, S. J., Lee, J. E., Herzschuh, U., Liu, X. (2015): High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia: Clim. Past 11 (4), 619-633.

50. Cook, E. R., Buckley, B. M., D’Arrigo, R. D., Peterson, M. J. (2000): Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies: Climate Dynamics 16 (2), 79-91.

51. Perner, K., Moros, M., De Deckker, P., Blanz, T., Wacker, L., Telford, R., Siegel, H., Schneider, R., Jansen, E. (2018): Heat export from the tropics drives mid to late Holocene palaeoceanographic changes offshore southern Australia: Quaternary Science Reviews 180, 96-110.

52. Hall, S. A., Penner, W. L. (2013): Stable carbon isotopes, C3–C4 vegetation, and 12,800years of climate change in central New Mexico, USA: Palaeogeography, Palaeoclimatology, Palaeoecology 369, 272-281.

53. Wang, T., Surge, D., Walker, K. J. (2013): Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida, USA: Quaternary International 308-309, 230-241.

54. Lea, D. W., Pak, D. K., Peterson, L. C., Hughen, K. A. (2003): Synchroneity of Tropical and High-Latitude Atlantic Temperatures over the Last Glacial Termination: Science 301 (5638), 1361-1364.

55. González-Carranza, Z., Hooghiemstra, H., Vélez, M. I. (2012): Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene: The Holocene 22 (11), 1227-1241.

56. Masson-Delmotte, V., Stenni, B., Jouzel, J. (2004): Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core: The Holocene 14 (2), 145-151.

57. Barbara, L., Crosta, X., Leventer, A., Schmidt, S., Etourneau, J., Domack, E., Massé, G. (2016): Environmental responses of the Northeast Antarctic Peninsula to the Holocene climate variability: Paleoceanography 31 (1), 131-147.

58. PAGES 2k Consortium (2013): Continental-scale temperature variability during the past two millennia: Nature Geosci 6 (5), 339-346.

59. PAGES 2k Consortium (2019): Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era: Nature Geoscience 12 (8), 643-649.

60. PAGES 2k Consortium (2017): A global multiproxy database for temperature reconstructions of the Common Era: Scientific Data, https://www.ncdc.noaa.gov/paleo-search/study/21171

61. FAZ (2009): Klimawandel und Erdpolitik: Ein Limit von zwei Grad Erwärmung ist praktisch Unsinn: FAZ, 29.10.2009, https://www.faz.net/aktuell/wissen/klima/klimawandel-und-erdpolitik-ein-limit-von-zwei-grad-erwaermung-ist-praktisch-unsinn-1871912.html

62. Mangini, A. (2007): Ihr kennt die wahren Gründe nicht: FAZ, 5.4.2007, https://www.faz.net/aktuell/wissen/klima/weltklimabericht-ihr-kennt-die-wahren-gruende-nicht-1433559.html