VI. Klimamodelle und Vorhersagen

28. Können wir den Klimasimulationen aus dem Computer vertrauen?

1. MCC (2018): CO2-Uhr des MCC auf neusten Stand gebracht: Pressemitteilung des Mercator Research Institute on Global Commons and Climate Change vom 8.11.2018, https://www.mcc-berlin.net/news/meldungen/meldungen-detail/article/co2-uhr-des-mcc-auf-neusten-stand-gebracht.html

2. IPCC (2018): Special Report on global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways: http://www.ipcc.ch/report/sr15/

3. Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., Allen, M. R. (2017): Emission budgets and pathways consistent with limiting warming to 1.5 °C: Nature Geoscience 10, 741.

4. Klimaretter.info (2017): CO₂-Budget könnte länger reichen: http://www.klimaretter.info/forschung/nachricht/23684-co2-budget-koennte-laenger-reichen

5. Tollefson, J. (2017): Limiting global warming to 1.5 °C may still be possible: Nature, 18.7.2017, https://www.nature.com/news/limiting-global-warming-to-1-5-c-may-still-be-possible-1.22627

6. Marotzke, J. (2019): Quantifying the irreducible uncertainty in near-term climate projections: Wiley Interdisciplinary Reviews: Climate Change 10 (1), e563.

7. Der Spiegel (2019): Warum Wolken der Fluch aller Klimaforscher sind: 22.3.2019, https://www.spiegel.de/wissenschaft/warum-die-vorhersagen-zur-erderwaermung-so-schwierig-sind-a-00000000-0002-0001-0000-000163037012

8. O’Reilly, C. H., Heatley, J., MacLeod, D., Weisheimer, A., Palmer, T. N., Schaller, N., Woollings, T. (2017): Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century: Geophysical Research Letters 44 (11), 5729-5738.

9. Saffioti, C., Fischer, E. M., Scherrer, S. C., Knutti, R. (2016): Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability: Geophysical Research Letters 43 (15), 8189-8198.

10. Palmer, T., Stevens, B. (2019): The scientific challenge of understanding and estimating climate change: Proceedings of the National Academy of Sciences 116 (49), 24390-24395.

11. Bishop Hill (2014): GCMs and public policy: 24.8.2014, http://www.bishop-hill.net/blog/2014/8/24/gcms-and-public-policy.html

12. Deser, C., Knutti, R., Solomon, S., Phillips, A. S. (2012): Communication of the role of natural variability in future North American climate: Nature Climate Change 2 (11), 775-779.

13. Santer, B. D., Fyfe, J. C., Pallotta, G., Flato, G. M., Meehl, G. A., England, M. H., Hawkins, E., Mann, M. E., Painter, J. F., Bonfils, C., Cvijanovic, I., Mears, C., Wentz, F. J., Po-Chedley, S., Fu, Q., Zou, C.-Z. (2017): Causes of differences in model and satellite tropospheric warming rates: Nature Geoscience 10, 478.

14. RSS (2020): Climate Analysis: http://www.remss.com/research/climate/

15. Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., Stouffer, R., Cole, J. E. (2017): Temperature and Precipitation Variance in CMIP5 Simulations and Paleoclimate Records of the Last Millennium: Journal of Climate 30 (22), 8885-8912.

16. Varotsos, C. A., Efstathiou, M. N., Cracknell, A. P. (2013): Plausible reasons for the inconsistencies between the modeled and observed temperatures in the tropical troposphere: Geophysical Research Letters 40 (18), 4906-4910.

17. ZAMG (2013): Temperatur-Hiatus: Klimamodelle erfassen Temperaturverlauf unzureichend: urspüngliche URL (heute nur noch über Wayback Machine mehr verfügbar): http://www.zamg.ac.at/cms/de/klima/informationsportal-klimawandel/klimaforschung/klimamodellierung/temperatur-hiatus, Zugriff 1.12.2013.

18. Laepple, T., Huybers, P. (2014): Ocean surface temperature variability: Large model–data differences at decadal and longer periods: Proceedings of the National Academy of Sciences 111 (47), 16682-16687.

19. Alfred-Wegener-Institut (2014): Neue Studie zeigt erhebliche Differenzen zwischen Klimaarchiven und Klimamodellen: 10.11.2014, https://www.awi.de/ueber-uns/service/presse-detailansicht/presse/wie-stark-schwanken-die-temperaturen-im-meer.html

20. DeAngelis, A. M., Qu, X., Zelinka, M. D., Hall, A. (2015): An observational radiative constraint on hydrologic cycle intensification: Nature 528, 249.

21. Bothe, O., Wagner, S., Zorita, E. (2019): Inconsistencies between observed, reconstructed, and simulated precipitation indices for England since the year 1650 CE: Climat of the Past 15, 307-334.

22. Yuan, X., Zhu, E. (2018): A First Look at Decadal Hydrological Predictability by Land Surface Ensemble Simulations: Geophysical Research Letters 45 (5), 2362-2369.

23. Bartlein, P. J., Harrison, S. P., Izumi, K. (2017): Underlying causes of Eurasian midcontinental aridity in simulations of mid-Holocene climate: Geophysical Research Letters 44 (17), 9020-9028.

24. Jin, Q., Wang, C. (2017): A revival of Indian summer monsoon rainfall since 2002: Nature Climate Change 7, 587.

25. Saha, A., Ghosh, S., Sahana, A. S., Rao, E. P. (2014): Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon: Geophysical Research Letters 41 (20), 7323-7330.

26. Prasanna, V. (2016): Assessment of South Asian Summer Monsoon Simulation in CMIP5-Coupled Climate Models During the Historical Period (1850–2005): Pure and Applied Geophysics 173 (4), 1379-1402.

27. Coats, S., Smerdon, J. E., Cook, B. I., Seager, R., Cook, E. R., Anchukaitis, K. J. (2016): Internal ocean-atmosphere variability drives megadroughts in Western North America: Geophysical Research Letters 43 (18), 9886-9894.

28. Prather, M. J., Hsu, J. C. (2019): A round Earth for climate models: Proceedings of the National Academy of Sciences 116 (39), 19330-19335.