IV. Extremwetter
24. Welche Rolle spielen Vulkane beim Klimawandel?
1. Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M., Wilson, R. (2019): Disproportionately strong climate forcing from extratropical explosive volcanic eruptions: Nature Geoscience 12 (2), 100-107.
2. Geomar (2019): Außertropische Vulkane beeinflussen das Klima stärker als vermutet: 28.1.2019, https://www.geomar.de/news/article/aussertropische-vulkane-beeinflussen-das-klima-staerker-als-vermutet/
3. Timmreck, C., Pohlmann, H., Illing, S., Kadow, C. (2016): The impact of stratospheric volcanic aerosol on decadal-scale climate predictions: Geophysical Research Letters 43 (2), 834-842.
4. Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schupbach, S., Steffensen, J. P., Vinther, B. M., Woodruff, T. E. (2015): Timing and climate forcing of volcanic eruptions for the past 2,500 years: Nature 523 (7562), 543-549.
5. Desert Research Institute (2015): Volcanic eruptions that changed human history: 8.7.2015, https://icecores.org/indepth/fall-2015/volcanic-eruptions-changed-human-history
6. Hamburger Bildungsserver (2020): Auswirkungen explosiver Vulkanausbrüche auf das Klimasystem: https://wiki.bildungsserver.de/klimawandel/index.php/Vulkanismus
7. Colose, C. M., LeGrande, A. N., Vuille, M. (2016): The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model: Clim. Past 12 (4), 961-979.
8. Zambri, B., LeGrande, A. N., Robock, A., Slawinska, J. (2017): Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium: Journal of Geophysical Research: Atmospheres 122 (15), 7971-7989.
9. McCoy, D. T., Hartmann, D. L. (2015): Observations of a substantial cloud-aerosol indirect effect during the 2014–2015 Bárðarbunga-Veiðivötn fissure eruption in Iceland: Geophysical Research Letters 42 (23), 10,409-410,414.
10. University of Washington (2015): Iceland volcano’s eruption shows how sulfur particles influence clouds: 9.12.2015, https://www.washington.edu/news/2015/12/09/iceland-volcanos-eruption-shows-how-sulfur-particles-influence-clouds/
11. Timmreck, C. (2011): Begrenzter Klimaeinfluss von extrem großen Vulkaneruptionen: Max-Planck-Gesellschaft, Jahrbuch 2010/2011, https://www.mpg.de/1181600/Klimaeinfluss_Vulkane
12. Timmreck, C., Lorenz, S. J., Crowley, T. J., Kinne, S., Raddatz, T. J., Thomas, M. A., Jungclaus, J. H. (2009): Limited temperature response to the very large AD 1258 volcanic eruption: Geophysical Research Letters 36 (21).
13. Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., Masson-Delmotte, V. (2015): Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years: Nature Geoscience 8, 784.
14. Gregory, J. M., Andrews, T., Good, P., Mauritsen, T., Forster, P. M. (2016): Small global-mean cooling due to volcanic radiative forcing: Climate Dynamics 47 (12), 3979-3991.
15. Brázdil, R., Řezníčková, L., Valášek, H., Dolák, L., Kotyza, O. (2016): Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands: Clim. Past 12 (6), 1361-1374.
16. Schurer, A. P., Hegerl, G. C., Luterbacher, J., Brönnimann, S., Cowan, T., Tett, S. F. B., Zanchettin, D., Timmreck, C. (2019): Disentangling the causes of the 1816 European year without a summer: Environmental Research Letters 14 (9), 094019.
17. Publishing, I. (2019): Role of Tambora eruption in the 1816 ‚year without a summer‘: 17.9.2019, https://www.sciencedaily.com/releases/2019/09/190917193624.htm
18. Haeseler, S. (2016): Der Ausbruch des Vulkans Tambora in Indonesien im Jahr 1815 und seine weltweiten Folgen, insbesondere das „Jahr ohne Sommer“ 1816: Deutscher Wetterdienst, https://www.dwd.de/DE/leistungen/besondereereignisse/verschiedenes/20170727_tambora_1816_global.html
19. Brönnimann, S., Krämer, D. (2016): Tambora und das «Jahr ohne Sommer» 1816: Geographica Bernensia G90, https://boris.unibe.ch/83607/1/tambora_d_web.pdf
20. DWD (2016): Vor 200 Jahren fiel der Sommer aus: 11.6.2016, https://www.dwd.de/DE/wetter/thema_des_tages/2016/6/11.html
21. University of Massachusetts Amherst (2017): New England’s 1816 ‘Mackerel Year’ and Climate Change Today: 18.1.2017, https://www.umass.edu/newsoffice/article/new-england%E2%80%99s-1816-%E2%80%98mackerel-year%E2%80%99-and
22. University of California at Berkeley (2015): 200th anniversary of Tambora eruption a reminder of volcanic perils: 31.3.2015, https://news.berkeley.edu/2015/03/31/200th-anniversary-of-tambora-eruption-a-reminder-of-volcanic-perils/
23. Genge, M. J. (2018): Electrostatic levitation of volcanic ash into the ionosphere and its abrupt effect on climate: Geology 46 (10), 835-838.
24. Imperial College London (2018): Napoleon’s defeat at Waterloo caused in part by Indonesian volcanic eruption: 22.8.2018, https://www.imperial.ac.uk/news/187828/napoleons-defeat-waterloo-caused-part-indonesian/
25. Longpré, M.-A., Stix, J., Burkert, C., Hansteen, T., Kutterolf, S. (2014): Sulfur budget and global climate impact of the A.D. 1835 eruption of Cosigüina volcano, Nicaragua: Geophysical Research Letters 41 (19), 6667-6675.
26. Schmidt, A., Thordarson, T., Oman, L. D., Robock, A., Self, S. (2012): Climatic impact of the long-lasting 1783 Laki eruption: Inapplicability of mass-independent sulfur isotopic composition measurements: Journal of Geophysical Research: Atmospheres 117 (D23).
27. Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N., Sielenou, P. D., Daux, V., Churakova , Olga V., Davi, N., Edouard, J.-L., Zhang, Y., Luckman, Brian H., Myglan, V. S., Guiot, J., Beniston, M., Masson-Delmotte, V., Oppenheimer, C. (2017): Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records: Nature Geoscience 10 (2), 123-128.
28. Dull, R. A., Southon, J. R., Kutterolf, S., Anchukaitis, K. J., Freundt, A., Wahl, D. B., Sheets, P., Amaroli, P., Hernandez, W., Wiemann, M. C., Oppenheimer, C. (2019): Radiocarbon and geologic evidence reveal Ilopango volcano as source of the colossal ‘mystery’ eruption of 539/40 CE: Quaternary Science Reviews 222, 105855.
29. Geomar (2019): Eruption in El Salvador verstärkte spätantike Klimakrise: 23.8.2019, https://www.geomar.de/news/article/eruption-in-el-salvador-verstaerkte-spaetantike-klimakrise/
30. Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., Thordarson, T. (2012): Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks: Geophysical Research Letters 39 (2).
31. Schurer, A. P., Hegerl, G. C., Obrochta, S. P. (2015): Determining the likelihood of pauses and surges in global warming: Geophysical Research Letters 42 (14), 5974-5982.
32. Sigl, M., McConnell, J. R., Toohey, M., Curran, M., Das, S. B., Edwards, R., Isaksson, E., Kawamura, K., Kipfstuhl, S., Krüger, K., Layman, L., Maselli, O. J., Motizuki, Y., Motoyama, H., Pasteris, D. R., Severi, M. (2014): Insights from Antarctica on volcanic forcing during the Common Era: Nature Climate Change 4 (8), 693-697.
33. Gao, C., Robock, A., Ammann, C. (2008): Volcanic forcing of climate over the past 1500 years: An improved ice core‐based index for climate models: J. Geophys. Res. 113.
34. Baillie, M. G. L., McAneney, J. (2015): Tree ring effects and ice core acidities clarify the volcanic record of the first millennium: Clim. Past 11 (1), 105-114.
35. Gautier, E., Savarino, J., Hoek, J., Erbland, J., Caillon, N., Hattori, S., Yoshida, N., Albalat, E., Albarede, F., Farquhar, J. (2019): 2600-years of stratospheric volcanism through sulfate isotopes: Nature Communications 10 (1), 466.
36. University of Maryland (2019): Revising the History of Big, Climate-Altering Volcanic Eruptions: 4.2.2019, https://cmns.umd.edu/news-events/features/4329
37. Steinhilber, F., Abreu, J. A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P. W., Mann, M., McCracken, K. G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F. (2012): 9,400 years of cosmic radiation and solar activity from ice cores and tree rings: Proceedings of the National Academy of Sciences 109 (16), 5967-5971.
38. Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F. (2009): Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly: Science 326 (5957), 1256-1260.
39. Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., England, M. H. (2014): Evolution of the Southern Annular Mode during the past millennium: Nature Climate Change 4, 564-569.
40. Andersson, S. M., Martinsson, B. G., Vernier, J.-P., Friberg, J., Brenninkmeijer, C. A. M., Hermann, M., van Velthoven, P. F. J., Zahn, A. (2015): Significant radiative impact of volcanic aerosol in the lowermost stratosphere: Nature Communications 6 (1), 7692.
41. TROPOS (2015): Vulkanausbrüche bremsen Klimawandel: 7.7.2015, https://www.tropos.de/aktuelles/pressemitteilungen/details/vulkanausbrueche-bremsen-klimawandel/
42. Balmaseda, M. A., Trenberth, K. E., Källén, E. (2013): Distinctive climate signals in reanalysis of global ocean heat content: Geophysical Research Letters 40 (9), 1754-1759.
43. Neely III, R. R., Toon, O. B., Solomon, S., Vernier, J.-P., Alvarez, C., English, J. M., Rosenlof, K. H., Mills, M. J., Bardeen, C. G., Daniel, J. S., Thayer, J. P. (2013): Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol: Geophysical Research Letters 40 (5), 999-1004.
44. Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T., Dolgii, S. I., Herber, A. B., Nagai, T., Neely III, R. R., Nevzorov, A. V., Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., Vernier, J. P. (2014): Total volcanic stratospheric aerosol optical depths and implications for global climate change: Geophysical Research Letters 41 (22), 7763-7769.
45. Santer, B. D., Solomon, S., Bonfils, C., Zelinka, M. D., Painter, J. F., Beltran, F., Fyfe, J. C., Johannesson, G., Mears, C., Ridley, D. A., Vernier, J.-P., Wentz, F. J. (2015): Observed multivariable signals of late 20th and early 21st century volcanic activity: Geophysical Research Letters 42 (2), 500-509.
46. Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger, L. A., Lloyd, N. D., Llewellyn, E. J., Degenstein, D. A. (2012): Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport: Science 337 (6090), 78-81.
47. University of Saskatchewan (2012): Satellite research reveals smaller volcanoes could cool climate 5.7.2012, https://www.eurekalert.org/pub_releases/2012-07/uos-srr070512.php
48. Haywood, J. M., Jones, A., Jones, G. S. (2014): The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model: Atmospheric Science Letters 15 (2), 92-96.
49. Stocker, M., Ladstädter, F., Wilhelmsen, H., Steiner, A. K. (2019): Quantifying Stratospheric Temperature Signals and Climate Imprints From Post-2000 Volcanic Eruptions: Geophysical Research Letters 46 (21), 12486-12494.
50. Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M.-S., Olsen, J. (2014): Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age: Nature Communications 5, 3323.
51. Aarhus University (2014): Temperature fluctuations: Atlantic Ocean dances with the sun and volcanoes: 31.3.2014, https://www.sciencedaily.com/releases/2014/03/140331114502.htm
52. Birkel, S. D., Mayewski, P. A., Maasch, K. A., Kurbatov, A. V., Lyon, B. (2018): Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation: npj Climate and Atmospheric Science 1 (1), 24.
53. Guðlaugsdóttir, H., Sjolte, J., Sveinbjörnsdóttir, Á. E., Werner, M., Steen-Larsen, H. C. (2019): North Atlantic weather regimes in δ18O of winter precipitation: isotopic fingerprint of the response in the atmospheric circulation after volcanic eruptions: Tellus B: Chemical and Physical Meteorology 71 (1), 1633848.
54. Guðlaugsdóttir, H., Steen-Larsen, H. C., Sjolte, J., Masson-Delmotte, V., Werner, M., Sveinbjörnsdóttir, Á. E. (2018): The influence of volcanic eruptions on weather regimes over the North Atlantic simulated by ECHAM5/MPI-OM ensemble runs from 800 to 2000 CE: Atmospheric Research 213, 211-223.
55. Sjolte, J., Sturm, C., Adolphi, F., Vinther, B. M., Werner, M., Lohmann, G., Muscheler, R. (2018): Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction: Climate of the Past 14, 1179-1194.
56. Wahl, E. R., Diaz, H. F., Smerdon, J. E., Ammann, C. M. (2014): Late winter temperature response to large tropical volcanic eruptions in temperate western North America: Relationship to ENSO phases: Global and Planetary Change 122, 238-250.
57. Swingedouw, D., Ortega, P., Mignot, J., Guilyardi, E., Masson-Delmotte, V., Butler, P. G., Khodri, M., Séférian, R. (2015): Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions: Nature Communications 6 (1), 6545.
58. CNRS (2015): Volcanic eruptions found to durably impact climate through alterations to North Atlantic Ocean circulation: 30.3.2015, https://www.sciencedaily.com/releases/2015/03/150330082744.htm
59. Guevara-Murua, A., Hendy, E. J., Rust, A. C., Cashman, K. V. (2015): Consistent decrease in North Atlantic Tropical Cyclone frequency following major volcanic eruptions in the last three centuries: Geophysical Research Letters 42 (21), 9425-9432.
60. Camargo, S. J., Polvani, L. M. (2019): Little evidence of reduced global tropical cyclone activity following recent volcanic eruptions: npj Climate and Atmospheric Science 2 (1), 14.
61. Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., Stenchikov, G. (2012): Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions: Journal of Geophysical Research: Atmospheres 117 (D17).
62. Bethke, I., Outten, S., Otterå, O. H., Hawkins, E., Wagner, S., Sigl, M., Thorne, P. (2017): Potential volcanic impacts on future climate variability: Nature Climate Change 7 (11), 799-805.