IV. Extremwetter
21. Unerträgliche Hitzewellen: Immer häufiger, immer heißer?
1. APCC (2014): Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14), Wien, Austrian Panel on Climate Change (APCC), Verlag der Österreichischen Akademie der Wissenschaften, http://austriaca.at/APPC_AAR2014.pdf
2. Umweltbundesamt (2019): Monitoringbericht 2019 zur zur Deutschen Anpassungsstrategie an den Klimawandel, Dessau-Roßlau, https://www.bmu.de/download/monitoringbericht-2019/, 276 p.
3. CH2018 (2018): Climate Scenarios for Switzerland, Zürich, Technical Report, National Centre for Climate Services.
4. IPCC (2012): Management des Risikos von Extremereignissen und Katastrophen zur Förderung der Anpassung an den Klimawandel – Zusammenfassung für politische Entscheidungsträger (deutsche Übersetzung): Sonderbericht des Zwischenstaatlichen Ausschusses für Klimaänderungen (IPCC), https://www.de-ipcc.de/128.php
5. Chase, T. N., Wolter, K., Pielke Sr., R. A., Rasool, I. (2006): Was the 2003 European summer heat wave unusual in a global context?: Geophysical Research Letters 33 (23).
6. García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J., Fischer, E. M. (2010): A Review of the European Summer Heat Wave of 2003: Critical Reviews in Environmental Science and Technology 40 (4), 267-306.
7. Wetter, O., Pfister, C. (2013): An underestimated record breaking event – why summer 1540 was very likely warmer than 2003: Climate of the Past 9, 41-56.
8. Možný, M., Brázdil, R., Dobrovolný, P., Trnka, M. (2016): April–August temperatures in the Czech Lands, 1499–2015, reconstructed from grape-harvest dates: Clim. Past 12 (7), 1421-1434.
9. Orth, R., Vogel, M. M., Luterbacher, J., Pfister, C., Seneviratne, S. I. (2016): Did European temperatures in 1540 exceed present-day records?: Environmental Research Letters 11 (11), 114021.
10. Hamburger Bildungsserver (2020): Hitzewellen: Beispiele und Folgen: https://bildungsserver.hamburg.de/wetterextreme-klimawandel/2103434/hitzewellen-global/
11. Mangini, A., Spötl, C., Verdesa, P. (2005): Reconstruction of temperature in the Central Alps during the past 2000 yr from a delta18O stalagmite record: Earth and Planetary Science Letters 235, 741-751.
12. Donat, M. G., King, A. D., Overpeck, J. T., Alexander, L. V., Durre, I., Karoly, D. J. (2016): Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions: Climate Dynamics 46 (1), 413-426.
13. NOAA (2020): State Climate Extremes Committee (SCEC): https://www.ncdc.noaa.gov/extremes/scec/records
14. Oswald, E. M., Rood, R. B. (2014): A Trend Analysis of the 1930–2010 Extreme Heat Events in the Continental United States: Journal of Applied Meteorology and Climatology 53 (3), 565-582.
15. Kunkel, K. E., Vose, R. S., Stevens, L. E., Knight, R. W. (2015): Is the monthly temperature climate of the United States becoming more extreme?: Geophysical Research Letters 42 (2), 629-636.
16. Peterson, T. C., Jr., R. R. H., Hirsch, R., Kaiser, D. P., Brooks, H., Diffenbaugh, N. S., Dole, R. M., Giovannettone, J. P., Guirguis, K., Karl, T. R., Katz, R. W., Kunkel, K., Lettenmaier, D., McCabe, G. J., Paciorek, C. J., Ryberg, K. R., Schubert, S., Silva, V. B. S., Stewart, B. C., Vecchia, A. V., Villarini, G., Vose, R. S., Walsh, J., Wehner, M., Wolock, D., Wolter, K., Woodhouse, C. A., Wuebbles, D. (2013): Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States: State of Knowledge: Bulletin of the American Meteorological Society 94 (6), 821-834.
17. NOAA (2020): Climate at a Glance: National Time Series: https://www.ncdc.noaa.gov/cag/national/time-series
18. Bureau of Meteorology (2020): Rainfall and Temperature Records: http://www.bom.gov.au/climate/extreme/records.shtml
19. Zheng, J., Wang, C. (2019): Hot Summers in the Northern Hemisphere: Geophysical Research Letters 46 (19), 10891-10900.
20. University of California at Davis (2019): Predicting Heat Waves? Look Half a World Away 12.4.2019, https://www.ucdavis.edu/climate-science/news/predicting-heat-waves-look-half-world-away
21. Lee, Y.-Y., Grotjahn, R. (2019): Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather: Advances in Atmospheric Sciences 36 (6), 589-602.
22. Ruprich-Robert, Y., Delworth, T., Msadek, R., Castruccio, F., Yeager, S., Danabasoglu, G. (2018): Impacts of the Atlantic Multidecadal Variability on North American Summer Climate and Heat Waves: Journal of Climate 31 (9), 3679-3700.
23. Deng, K., Yang, S., Ting, M., Tan, Y., He, S. (2018): Global Monsoon Precipitation: Trends, Leading Modes, and Associated Drought and Heat Wave in the Northern Hemisphere: Journal of Climate 31 (17), 6947-6966.
24. Ouarda, T. B. M. J., Charron, C. (2018): Nonstationary Temperature-Duration-Frequency curves: Scientific reports 8 (1), 15493-15493.
25. Zhang, G., Zeng, G., Li, C., Yang, X. (2020): Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period: Climate Dynamics.
26. Della-Marta, P. M., Luterbacher, J., Weissenfluh, H. v., Xoplaki, E., Brunet, M., Wanner, H. (2007): Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability: Clim Dyn 29, 251-275.
27. Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez, L., Müller, W. A. (2019): Decadal Predictions of the Probability of Occurrence for Warm Summer Temperature Extremes: Geophysical Research Letters 46 (23), 14042-14051.
28. Sanderson, M. G., Economou, T., Salmon, K. H., Jones, S. E. O. (2017): Historical Trends and Variability in Heat Waves in the United Kingdom: Atmosphere 8 (10), 191.
29. Keellings, D., Waylen, P. (2015): Investigating teleconnection drivers of bivariate heat waves in Florida using extreme value analysis: Climate Dynamics 44 (11), 3383-3391.
30. McCarthy, M., Christidis, N., Dunstone, N., Fereday, D., Kay, G., Klein-Tank, A., Lowe, J., Petch, J., Scaife, A., Stott, P. (2019): Drivers of the UK summer heatwave of 2018: Weather 74 (11), 390-396.
31. Perkins, S. E. (2015): A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale: Atmospheric Research 164-165, 242-267.
32. Parker, T. J., Berry, G. J., Reeder, M. J., Nicholls, N. (2014): Modes of climate variability and heat waves in Victoria, southeastern Australia: Geophysical Research Letters 41 (19), 6926-6934.
33. Luo, M., Lau, N.-C. (2019): Amplifying effect of ENSO on heat waves in China: Climate Dynamics 52 (5), 3277-3289.
34. Lin, L., Chen, C., Luo, M. (2018): Impacts of El Niño–Southern Oscillation on heat waves in the Indochina peninsula: Atmospheric Science Letters 19 (11), e856.
35. Parker, T. J., Berry, G. J., Reeder, M. J. (2013): The influence of tropical cyclones on heat waves in Southeastern Australia: Geophysical Research Letters 40 (23), 6264-6270.
36. Lewis, S. C., Karoly, D. J. (2013): Anthropogenic contributions to Australia’s record summer temperatures of 2013: Geophysical Research Letters 40 (14), 3705-3709.
37. Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T., Quan, X.-W., Xu, T., Murray, D. (2011): Was There a Basis for Anticipating the 2010 Russian Heat Wave?: Geophysical Research Letters 38, 1-5.
38. Rahmstorf, S., Coumou, D. (2011): Increase of extreme events in a warming world: PNAS, 1-5.
39. Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., Allen, M. R. (2012): Reconciling two approaches to attribution of the 2010 Russian heat wave: Geophysical Research Letters 39 (4).
40. Trenberth, K. E., Fasullo, J. T. (2012): Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010: Journal of Geophysical Research: Atmospheres 117 (D17).
41. Tollefson, J. (2012): Heatwaves blamed on global warming: Nature 488, 143-144.
42. Schneidereit, A., Schubert, S., Vargin, P., Lunkeit, F., Zhu, X., Peters, D. H. W., Fraedrich, K. (2012): Large-Scale Flow and the Long-Lasting Blocking High over Russia: Summer 2010: Monthly Weather Review 140 (9), 2967-2981.
43. Zapperoni, I. (2019): ANDERLAND. Die USA unter Trump – ein Schadensbericht, Ullstein Taschenbuch.
44. Dole, R., Hoerling, M., Kumar, A., Eischeid, J., Perlwitz, J., Quan, X.-W., Kiladis, G., Webb, R., Murray, D., Chen, M., Wolter, K., Zhang, T. (2014): The Making of an Extreme Event: Putting the Pieces Together: Bulletin of the American Meteorological Society 95 (3), 427-440.
45. Shiogama, H., Watanabe, M., Imada, Y., Mori, M., Kamae, Y., Ishii, M., Kimoto, M. (2014): Attribution of the June-July 2013 Heat Wave in the Southwestern United States: SOLA 10, 122-126.
46. Lopez, H., West, R., Dong, S., Goni, G., Kirtman, B., Lee, S.-K., Atlas, R. (2018): Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes: Nature Climate Change 8 (5), 414-420.
47. Bador, M., Terray, L., Boé, J. (2016): Emergence of human influence on summer record-breaking temperatures over Europe: Geophysical Research Letters 43 (1), 404-412.