III. Eis
13. Die Gebirgsgletscher schmelzen. Wie schlimm ist das?
1. Spiegel Online (2019): Gedenktafel und Trauerfeier: Island erklärt Gletscher offiziell für „tot“ 19.8.2019, https://www.spiegel.de/wissenschaft/natur/island-erklaert-gletscher-offiziell-fuer-tot-mit-gedenktafel-und-trauerfeier-a-1282533.html
2. Holmes, N., Langdon, P. G., Caseldine, C. J., Wastegård, S., Leng, M. J., Croudace, I. W., Davies, S. M. (2016): Climatic variability during the last millennium in Western Iceland from lake sediment records: The Holocene 26 (5), 756-771.
3. Larsen, D. J., Miller, G. H., Geirsdóttir, Á., Thordarson, T. (2011): A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland: Quaternary Science Reviews 30, 2715-2731.
4. Kirkbride, M. P., Dugmore, A. J. (2008): Two millennia of glacier advances from southern Iceland dated by tephrochronology: Quaternary Research 70 (3), 398-411.
5. Rösener, W. (2010): Landwirtschaft und Klimawandel in historischer Perspektive: Bundeszentrale für politische Bildung, 15.1.2010, https://www.bpb.de/apuz/32996/landwirtschaft-und-klimawandel-in-historischer-perspektive?p=all
6. Axford, Y., Geirsdóttir, Á., Miller, G. H., Langdon, P. G. (2009): Climate of the Little Ice Age and the past 2000 years in northeast Iceland inferred from chironomids and other lake sediment proxies: Journal of Paleolimnology 41 (1), 7-24.
7. Larsen, D. J., Miller, G. H., Geirsdóttir, Á., Ólafsdóttir, S. (2012): Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland: Quaternary Science Reviews 39, 14-25.
8. Geirsdóttir, Á., Miller, G. H., Larsen, D. J., Ólafsdóttir, S. (2013): Abrupt Holocene climate transitions in the northern North Atlantic region recorded by synchronized lacustrine records in Iceland: Quaternary Science Reviews 70, 48-62.
9. Ingólfsson, Ó., Norðdahl, H., Schomacker, A. (2010): Deglaciation and Holocene Glacial History of Iceland, in Schomacker, A., Krüger, J., and Kjær, K. H., eds., Developments in Quaternary Sciences, Volume 13, Elsevier, S. 51-68.
10. Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., Thordarson, T. (2019): The onset of neoglaciation in Iceland and the 4.2 ka event: Clim. Past 15 (1), 25-40.
11. Striberger, J., Björck, S., Holmgren, S., Hamerlík, L. (2012): The sediments of Lake Lögurinn – A unique proxy record of Holocene glacial meltwater variability in eastern Iceland: Quaternary Science Reviews 38, 76-88.
12. Gunnlaugsson, D. (2019): Iceland’s melting glaciers are nothing to panic about: The Spectator, 23.11.2019, https://www.spectator.co.uk/2019/11/icelands-melting-glaciers-are-nothing-to-panic-about/
13. Der Spiegel (2019): Klimawandel: Gletscher in der Schweiz beerdigt 22.9.2019, https://www.spiegel.de/wissenschaft/natur/schweiz-pizol-gletscher-beerdigt-neue-zahlen-der-weltwetterorganisation-a-1288050.html
14. Huss, M. (2010): Mass balance of Pizolgletscher: Geogr. Helv. 65 (2), 80-91.
15. Lüthi, M. P. (2014): Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations: The Cryosphere 8 (2), 639-650.
16. Schomacker, A., Benediktsson, Í. Ö., Ingólfsson, Ó., Friis, B., Korsgaard, N. J., Kjær, K. H., Keiding, J. K. (2012): Late Holocene and modern glacier changes in the marginal zone of Sólheimajökull, South Iceland Anders: Jökull 62, 111-130.
17. Schimmelpfennig, I., Schaefer, J. M., Akçar, N., Koffman, T., Ivy-Ochs, S., Schwartz, R., Finkel, R. C., Zimmerman, S., Schlüchter, C. (2014): A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating: Earth and Planetary Science Letters 393, 220-230.
18. Holzhauser, H., Magny, M., Zumbuühl, H. J. (2005): Glacier and lake-level variations in west-central Europe over the last 3500 years: The Holocene 15 (6), 789-801.
19. Nicolussi, K., Kerschner, H. (2014): Lateglacial and Holocene advance record of the Gepatschferner, Kaunertal, Tyrol, in Kerschner, H., Krainer, K., and Spötl, C., eds., From the foreland to the Central Alps, Geozon, S. 144-151.
20. Schimmelpfennig, I., Schaefer, J. M., Akçar, N., Ivy-Ochs, S., Finkel, R. C., Schlüchter, C. (2012): Holocene glacier culminations in the Western Alps and their hemispheric relevance: Geology 40 (10), 891-894.
21. Le Roy, M., Nicolussi, K., Deline, P., Astrade, L., Edouard, J.-L., Miramont, C., Arnaud, F. (2015): Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif: Quaternary Science Reviews 108, 1-22.
22. Simonneau, A., Chapron, E., Garçon, M., Winiarski, T., Graz, Y., Chauvel, C., Debret, M., Motelica-Heino, M., Desmet, M., Di Giovanni, C. (2014): Tracking Holocene glacial and high-altitude alpine environments fluctuations from minerogenic and organic markers in proglacial lake sediments (Lake Blanc Huez, Western French Alps): Quaternary Science Reviews 89, 27-43.
23. Glur, L., Stalder, N. F., Wirth, S. B., Gilli, A., Anselmetti, F. S. (2015): Alpine lacustrine varved record reveals summer temperature as main control of glacier fluctuations over the past 2250 years: The Holocene 25 (2), 280-287.
24. Badino, F., Ravazzi, C., Vallè, F., Pini, R., Aceti, A., Brunetti, M., Champvillair, E., Maggi, V., Maspero, F., Perego, R., Orombelli, G. (2018): 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction: Quaternary Science Reviews 185, 41-68.
25. Joerin, U. E., Stocker, T. F., Schlüchter, C. (2006): Multicentury glacier fluctuations in the Swiss Alps during the Holocene: The Holocene 16 (5), 697-704.
26. Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., Schlüchter, C. (2009): Latest Pleistocene and Holocene glacier variations in the European Alps: Quaternary Science Reviews 28, 2137-2149.
27. ETH Zürich (2005): Grüne Alpen statt ewiges Eis Web-Zeitung der ETH Zürich, 14.2.2005, http://archiv.ethlife.ethz.ch/articles/sciencelife/gruenealpen.html
28. APCC (2014): Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14), Wien, Austrian Panel on Climate Change (APCC), Verlag der Österreichischen Akademie der Wissenschaften, http://austriaca.at/APPC_AAR2014.pdf
29. Barclay, D. J., Yager, E. M., Graves, J., Kloczko, M., Calkin, P. E. (2013): Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations: Quaternary Science Reviews 81, 74-89.
30. Stansell, N. D., Rodbell, D. T., Licciardi, J. M., Sedlak, C. M., Schweinsberg, A. D., Huss, E. G., Delgado, G. M., Zimmerman, S. H., Finkel, R. C. (2015): Late Glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the Eastern Cordillera of the Peruvian Andes: Geology 43 (8), 747-750.
31. Schaefer, J. M., Denton, G. H., Kaplan, M., Putnam, A., Finkel, R. C., Barrell, D. J. A., Andersen, B. G., Schwartz, R., Mackintosh, A., Chinn, T., Schlüchter, C. (2009): High-Frequency Holocene Glacier Fluctuations in New Zealand Differ from the Northern Signature: Science 324 (5927), 622-625.
32. Osborn, G., Menounos, B., Ryane, C., Riedel, J., Clague, J. J., Koch, J., Clark, D., Scott, K., Davis, P. T. (2012): Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington: Quaternary Science Reviews 49, 33-51.
33. Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., Young, N. E. (2015): Holocene glacier fluctuations: Quaternary Science Reviews 111, 9-34.
34. Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., Yang, B. (2016): Glacier fluctuations during the past 2000 years: Quaternary Science Reviews 149, 61-90.
35. Hormes, A., Beer, J., Schlüchter, C. (2006): A geochronological approach to understanding the role of solar activity on holocene glacier length variability in the swiss alps: Geografiska Annaler: Series A, Physical Geography 88 (4), 281-294.
36. Lee, W.-S., Kim, M.-K. (2013): Radiative effect of black carbon aerosol on seasonal variation in snow depth in the Northern-Hemisphere: Asia-Pacific Journal of Atmospheric Sciences 49 (2), 201-207.
37. Sand, M., Berntsen, T. K., Seland, Ø., Kristjánsson, J. E. (2013): Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes: Journal of Geophysical Research: Atmospheres 118 (14), 7788-7798.
38. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., Zender, C. S. (2013): Bounding the role of black carbon in the climate system: A scientific assessment: Journal of Geophysical Research: Atmospheres 118 (11), 5380-5552.
39. Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., Abdalati, W. (2013): End of the Little Ice Age in the Alps forced by industrial black carbon: Proceedings of the National Academy of Sciences 110 (38), 15216-15221.
40. Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., Schwikowski, M. (2018): 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers: The Cryosphere 12 (10), 3311-3331.
41. Lüning, S., Vahrenholt, F. (2017): Paleoclimatological Context and Reference Level of the 2°C and 1.5°C Paris Agreement Long-Term Temperature Limits: Frontiers in Earth Science 5 (104).
42. Marzeion, B., Cogley, J. G., Richter, K., Parkes, D. (2014): Attribution of global glacier mass loss to anthropogenic and natural causes: Science 345 (6199), 919-921.
43. Marzeion, B., Jarosch, A. H., Gregory, J. M. (2014): Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change: The Cryosphere 8 (1), 59-71.
44. Leclercq, P. W., Oerlemans, J., Basagic, H. J., Bushueva, I., Cook, A. J., Le Bris, R. (2014): A data set of worldwide glacier length fluctuations: The Cryosphere 8 (2), 659-672.