VI. KLIMAMODELLE UND VORHERSAGEN

30. Welche Anzeichen gibt es für Kipppunkte?

1. Russill, C. (2015): Climate change tipping points: origins, precursors, and debates: WIREs Climate Change 6 (4), 427-434.

2. PIK (2018): Auf dem Weg in die „Heißzeit“? Planet könnte kritische Schwelle überschreiten: 6.8.2018, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/auf-dem-weg-in-die-heisszeit-planet-koennte-kritische-schwelle-ueberschreiten

3. Grüter, M. (2016): Klimawandel: Das allzu ferne Wetterleuchten: 4.7.2016, https://scilogs.spektrum.de/babylonische-tuerme/klimawandel-das-allzu-ferne-wetterleuchten/

4. Quarks.de (2018): Kippsysteme: 5 tickende Zeitbomben, die unser Klima radikal verändern würden: 9.10.2018, https://www.quarks.de/umwelt/klimawandel/diese-5-kippelemente-beschleunigen-die-klimaerwaermung/

5. PIK (2019): Kipp-Elemente: Zu riskant, um gegen sie zu wetten: 28.11.2019, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/kipp-elemente-zu-riskant-um-gegen-sie-zu-wetten

6. PIK (2015): Vier von neun „planetaren Grenzen” bereits überschritten 16.1.2015, https://www.pik-potsdam.de/de/aktuelles-archiv/pressemitteilungen/vier-von-neun-planetaren-grenzen201d-bereits-ueberschritten

7. PIK (2020): Kippelemente – Achillesfersen im Erdsystem: https://www.pik-potsdam.de/services/infothek/kippelemente

8. PIK (2008): Kippelemente im Klimasystem der Erde 5.2.2008, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/archiv/2008/kippelemente-im-klimasystem-der-erde

9. The Guardian (2004): Now the Pentagon tells Bush: climate change will destroy us: 22.2.2004, https://www.theguardian.com/environment/2004/feb/22/usnews.theobserver

10. Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., Schellnhuber, H. J. (2008): Tipping elements in the Earth’s climate system: Proceedings of the National Academy of Sciences 105 (6), 1786-1793.

11. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., Sörlin, S. (2015): Planetary boundaries: Guiding human development on a changing planet: Science 347 (6223), 1259855.

12. Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., Schellnhuber, H. J. (2018): Trajectories of the Earth System in the Anthropocene: Proceedings of the National Academy of Sciences 115 (33), 8252-8259.

13. Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., Schellnhuber, H. J. (2019): Climate tipping points — too risky to bet against: 27.11.2019, https://www.nature.com/articles/d41586-019-03595-0

14. Baker, M. (2020): Do climate tipping points threaten catastrophe?: https://www.youtube.com/watch?v=m2K-E9TM1WE

15. Otto, I. M., Donges, J. F., Cremades, R., Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Allerberger, F., McCaffrey, M., Doe, S. S. P., Lenferna, A., Morán, N., van Vuuren, D. P., Schellnhuber, H. J. (2020): Social tipping dynamics for stabilizing Earth’s climate by 2050: Proceedings of the National Academy of Sciences 117 (5), 2354-2365.

16. PIK (2020): Gesellschaftliche Kippmechanismen können den Durchbruch zur Klimastabilisierung auslösen 21.1.2020, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/gesellschaftliche-kippmechanismen-konnen-den-durchbruch-zur-klimastabilisierung-auslosen

17. Crucifix, M., Annan, J. (2019): Is the concept of ‘tipping point’ helpful for describing and communicating possible climate futures?, in Hulme, M., ed., Contemporary Climate Change Debates: London, Routledge.

18. Hulme, M. (2020): Is it too late (to stop dangerous climate change)? An editorial: WIREs Climate Change 11 (1), e619.

19. Allen, M. (2019): Why protesters should be wary of ‘12 years to climate breakdown’ rhetoric: 26.4.2019, https://www.oxfordmartin.ox.ac.uk/blog/why-protesters-should-be-wary-of-12-years-to-climate-breakdown-rhetoric/

20. Robinson, A., Calov, R., Ganopolski, A. (2012): Multistability and critical thresholds of the Greenland ice sheet: Nature Climate Change 2 (6), 429-432.

21. PIK (2012): Grönlands Eismassen könnten komplett schmelzen bei 1,6 Grad globaler Erwärmung: 11.3.2012, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/archiv/2012/gronlands-eismassen-konnten-komplett-schmelzen-bei-1-6-grad-globaler-erwarmung?set_language=de

22. Mudelsee, M., Raymo, M. E. (2005): Slow dynamics of the Northern Hemisphere glaciation: Paleoceanography 20 (4).

23. Bierman, P. R., Corbett, L. B., Graly, J. A., Neumann, T. A., Lini, A., Crosby, B. T., Rood, D. H. (2014): Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet: Science 344 (6182), 402-405.

24. Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan, R., Armitage, S., Hoog, C.-J. d., Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., Collins, M. J. (2007): Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland: Science 317, 111-114

25. Irvalı, N., Galaasen, E. V., Ninnemann, U. S., Rosenthal, Y., Born, A., Kleiven, H. F. (2020): A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene: Proceedings of the National Academy of Sciences 117 (1), 190-195.

26. Quiquet, A., Ritz, C., Punge, H. J., Salas y Mélia, D. (2013): Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data: Clim. Past 9 (1), 353-366.

27. Schaefer, J. M., Finkel, R. C., Balco, G., Alley, R. B., Caffee, M. W., Briner, J. P., Young, N. E., Gow, A. J., Schwartz, R. (2016): Greenland was nearly ice-free for extended periods during the Pleistocene: Nature 540 (7632), 252-255.

28. Alley, R. B., Andrews, J. T., Brigham-Grette, J., Clarke, G. K. C., Cuffey, K. M., Fitzpatrick, J. J., Funder, S., Marshall, S. J., Miller, G. H., Mitrovica, J. X., Muhs, D. R., Otto-Bliesner, B. L., Polyak, L., White, J. W. C. (2010): History of the Greenland Ice Sheet: paleoclimatic insights: Quaternary Science Reviews 29 (15), 1728-1756.

29. NEEM-community-members (2013): Eemian interglacial reconstructed from a Greenland folded ice core: Nature 493 (7433), 489-494.

30. Alfred-Wegener-Institut (2013): Neue Eiskern-Studie: Grönlands Eisschild schrumpfte während der Eem-Warmzeit nur minimal: 23.1.2013, https://www.awi.de/nc/ueber-uns/service/presse-detailansicht/presse/neue-eiskern-studie-groenlands-eisschild-schrumpfte-waehrend-der-eem-warmzeit-nur-minimal.html

31. Calov, R., Robinson, A., Perrette, M., Ganopolski, A. (2015): Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization: The Cryosphere 9 (1), 179-196.

32. Axford, Y., Lasher, G. E., Kelly, M. A., Osterberg, E. C., Landis, J., Schellinger, G. C., Pfeiffer, A., Thompson, E., Francis, D. R. (2019): Holocene temperature history of northwest Greenland – With new ice cap constraints and chironomid assemblages from Deltasø: Quaternary Science Reviews 215, 160-172.

33. Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., Svensson, A. M. (2009): Holocene thinning of the Greenland ice sheet: Nature 461 (7262), 385-388.

34. Kobashi, T., Menviel, L., Jeltsch-Thömmes, A., Vinther, B. M., Box, J. E., Muscheler, R., Nakaegawa, T., Pfister, P. L., Döring, M., Leuenberger, M., Wanner, H., Ohmura, A. (2017): Volcanic influence on centennial to millennial Holocene Greenland temperature change: Scientific Reports 7 (1), 1441.

35. Axford, Y., Losee, S., Briner, J. P., Francis, D. R., Langdon, P. G., Walker, I. R. (2013): Holocene temperature history at the western Greenland Ice Sheet margin reconstructed from lake sediments: Quaternary Science Reviews 59, 87-100.

36. Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K., Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., Wagner, B. (2016): Holocene climate change in Arctic Canada and Greenland: Quaternary Science Reviews 147, 340-364.

37. Larsen, N. K., Kjær, K. H., Lecavalier, B., Bjørk, A. A., Colding, S., Huybrechts, P., Jakobsen, K. E., Kjeldsen, K. K., Knudsen, K.-L., Odgaard, B. V., Olsen, J. (2015): The response of the southern Greenland ice sheet to the Holocene thermal maximum: Geology 43 (4), 291-294.

38. University of Buffalo (2013): Greenland’s shrunken ice sheet: We’ve been here before: 22.11.2013, http://www.buffalo.edu/news/releases/2013/11/033.html

39. Briner, J. P., Kaufman, D. S., Bennike, O., Kosnik, M. A. (2014): Amino acid ratios in reworked marine bivalve shells constrain Greenland Ice Sheet history during the Holocene: Geology 42 (1), 75-78.

40. Tedstone, A. J., Nienow, P. W., Gourmelen, N., Dehecq, A., Goldberg, D., Hanna, E. (2015): Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming: Nature 526 (7575), 692-695.

41. NASA (2015): Land-Facing, Southwest Greenland Ice Sheet Movement Decreasing: 28.10.2015, https://www.nasa.gov/feature/goddard/land-facing-southwest-greenland-ice-sheet-movement-decreasing

42. University of Edinburgh (2015): Study sheds light on Greenland Ice Sheet: 28.3.2015, https://www.ed.ac.uk/news/2015/greenland-291015.

43. Tedstone, A. J., Nienow, P. W., Sole, A. J., Mair, D. W. F., Cowton, T. R., Bartholomew, I. D., King, M. A. (2013): Greenland ice sheet motion insensitive to exceptional meltwater forcing: Proceedings of the National Academy of Sciences 110 (49), 19719-19724.

44. Lindsay, R. W., Zhang, J. (2005): The Thinning of Arctic Sea Ice, 1988–2003: Have We Passed a Tipping Point?: Journal of Climate 18 (22), 4879-4894.

45. BBC (2012): Arctic sea ice reaches record low, Nasa says: 27.8.2012, https://www.bbc.com/news/science-environment-19393075

46. Wadhams, P. (2012): Die arktische Todesspirale: Spektum der Wissenschaft, 14.11.2012, https://www.spektrum.de/kolumne/die-arktische-todesspirale/1170641

47. mrcTV (2015): Flashback: 7 Years Ago, Al Gore Said North Pole Would be Ice-Free in 5 Years: 13.12.2015, https://www.mrctv.org/blog/flashback-7-years-ago-al-gore-said-north-pole-would-be-ice-free-five-years

48. Notz, D. (2017): Arctic sea ice seasonal-to-decadal variability and long-term change: Past Global Changes Magazine 25 (1), 14-19.

49. Wagner, T. J. W., Eisenman, I. (2015): How Climate Model Complexity Influences Sea Ice Stability: Journal of Climate 28 (10), 3998-4014.

50. Scripps Oceanic Institution (2015): Arctic Sea Ice Loss Likely To Be Reversible: 22.4.2015, https://scripps.ucsd.edu/news/research-highlight-arctic-sea-ice-loss-likely-be-reversible

51. Notz, D., Stroeve, J. (2018): The Trajectory Towards a Seasonally Ice-Free Arctic Ocean: Current Climate Change Reports 4 (4), 407-416.

52. Tietsche, S., Notz, D., Jungclaus, J. H., Marotzke, J. (2011): Recovery mechanisms of Arctic summer sea ice: Geophysical Research Letters 38, 1-4.

53. Serreze, M. C. (2011): Rethinking the sea-ice tipping point: Nature 471 (7336), 47-48.

54. Tilling, R. L., Ridout, A., Shepherd, A., Wingham, D. J. (2015): Increased Arctic sea ice volume after anomalously low melting in 2013: Nature Geoscience 8 (8), 643-646.

55. UCL (2015): Cool summer of 2013 boosted Arctic sea ice: 20.7.2015, https://www.sciencedaily.com/releases/2015/07/150720114945.htm

56. Wagner, T. J. W., Eisenman, I. (2015): False alarms: How early warning signals falsely predict abrupt sea ice loss: Geophysical Research Letters 42 (23), 10,333-310,341.

57. Runge, M. C., Stroeve, J. C., Barrett, A. P., McDonald-Madden, E. (2016): Detecting failure of climate predictions: Nature Climate Change 6 (9), 861-864.

58. Niederdrenk, A. L., Notz, D. (2018): Arctic Sea Ice in a 1.5°C Warmer World: Geophysical Research Letters 45 (4), 1963-1971.

59. PIK (2014): Klimawandel trifft Wälder weltweit: 19.12.2014, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/archiv/2014/klimawandel-trifft-waelder-weltweit

60. Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., Zaragoza-Castells, J., Meir, P., Betts, R., Harris, P. P., Nobre, C., Marengo, J., Cox, P. M. (2013): Simulated resilience of tropical rainforests to CO2-induced climate change: Nature Geoscience 6 (4), 268-273.

61. Heffernan, O. (2013): Tropical forests unexpectedly resilient to climate change: 10.3.2013, http://www.nature.com/news/tropical-forests-unexpectedly-resilient-to-climate-change-1.12570

62. Wuyts, B., Champneys, A. R., House, J. I. (2017): Amazonian forest-savanna bistability and human impact: Nature Communications 8 (1), 15519.

63. University of Bristol (2017): Amazon rainforest may be more resilient to deforestation than previously thought: 30.5.2017, http://www.bristol.ac.uk/news/2017/may/amazon-rainforest.html

64. PIK (2019): Der Amazonaswald kann durch wechselhafte Regenfälle trainiert werden – dem Tempo des Klimawandels ist er möglicherweise dennoch nicht gewachsen 25.2.2019, https://www.pik-potsdam.de/aktuelles/pressemitteilungen/der-amazonaswald-kann-durch-wechselhafte-regenfaelle-trainiert-werden-dem-tempo-des-klimawandels-ist-er-moeglicherweise-dennoch-nicht-gewachsen

65. Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., Luke, C. M. (2013): Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability: Nature 494 (7437), 341-344.

66. University of Exeter (2013): Lungs of the planet reveal their true sensitivity to global warming: 6.2.2013, https://www.sciencedaily.com/releases/2013/02/130206131050.htm

67. Schimel, D., Stephens, B. B., Fisher, J. B. (2015): Effect of increasing CO2 on the terrestrial carbon cycle: Proceedings of the National Academy of Sciences 112 (2), 436-441.

68. NASA Jet Propulsion Laboratory (2014): NASA Finds Good News on Forests and Carbon Dioxide: 29.12.2014, https://www.jpl.nasa.gov/news/news.php?feature=4424

69. Nascimento, M. N., Martins, G. S., Cordeiro, R. C., Turcq, B., Moreira, L. S., Bush, M. B. (2019): Vegetation response to climatic changes in western Amazonia over the last 7,600 years: Journal of Biogeography 46 (11), 2389-2406.

70. Dick, C. W., Lewis, S. L., Maslin, M., Bermingham, E. (2013): Neogene origins and implied warmth tolerance of Amazon tree species: Ecology and Evolution 3 (1), 162-169.

71. University of East Anglia (2015): Hydroelectric dams drastically reduce tropical forest biodiversity: 1.7.2015, https://www.uea.ac.uk/about/-/hydroelectric-dams-drastically-reduce-tropical-forest-biodiversity

72. Kim, D.-H., Sexton, J. O., Townshend, J. R. (2015): Accelerated deforestation in the humid tropics from the 1990s to the 2000s: Geophysical Research Letters 42 (9), 3495-3501.

73. Helmholtz Zentrum für Umweltforschung (2015): Interaktion verschiedener Treiber Ursache für den Artenrückgang: 27.9.2015, https://www.ufz.de/index.php?de=36800.

74. Scinexx.de (2015): Verlust der Artenvielfalt durch Landnutzung: 13.5.2015, https://www.scinexx.de/news/biowissen/verlust-der-artenvielfalt-durch-landnutzung/

75. University of Cambridge (2017): Political instability and weak governance lead to loss of species, study finds: 20.12.2017, https://www.cam.ac.uk/research/news/political-instability-and-weak-governance-lead-to-loss-of-species-study-finds

76. Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W., Blomqvist, L. (2013): Does the terrestrial biosphere have planetary tipping points?: Trends in Ecology & Evolution 28 (7), 396-401.

77. Kerwin, M. W., Overpeck, J. T., Webb, R. S., DeVernal, A., Rind, D. H., Healy, R. J. (1999): The role of oceanic forcing in mid-Holocene northern hemisphere climatic change: Paleoceanography 14 (2), 200-210.

78. Andreev, A. A., Tarasov, P. E., Ilyashuk, B. P., Ilyashuk, E. A., Cremer, H., Hermichen, W.-D., Wischer, F., Hubberten, H.-W. (2005): Holocene environmental history recorded in Lake Lyadhej-To sediments, Polar Urals, Russia: Palaeogeography, Palaeoclimatology, Palaeoecology 223 (3), 181-203.

79. Biskaborn, B. K., Subetto, D. A., Savelieva, L. A., Vakhrameeva, P. S., Hansche, A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L. A., Meyer, H., Kuhn, G., Diekmann, B. (2016): Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability: Quaternary Science Reviews 147, 406-421.

80. Fleming, E. M., 2008: Reconstruction of Holocene environmental changes in northern British Columbia using fossil midges [M.Sc. thesis: University of British Columbia, http://hdl.handle.net/2429/2811.

81. Yakovlev, I. A., Carneros, E., Lee, Y., Olsen, J. E., Fossdal, C. G. (2016): Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce: Planta 243 (5), 1237-1249.

82. NIBIO (2016): The survival of species suddenly looks better: 27.4.2016, https://www.nibio.no/en/news/the-survival-of-species-suddenly-looks-better

83. Héon, J., Arseneault, D., Parisien, M.-A. (2014): Resistance of the boreal forest to high burn rates: Proceedings of the National Academy of Sciences of the United States of America 111 (38), 13888-13893.

84. Carcaillet, C., Richard, P. J. H., Bergeron, Y., Fréchette, B., Ali, A. A. (2010): Resilience of the boreal forest in response to Holocene fire-frequency changes assessed by pollen diversity and population dynamics: International Journal of Wildland Fire 19 (8), 1026-1039.

85. Hart, S. J., Henkelman, J., McLoughlin, P. D., Nielsen, S. E., Truchon-Savard, A., Johnstone, J. F. (2019): Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest: Global Change Biology 25 (3), 869-884.

86. Weldon, J., Grandin, U. (2019): Major disturbances test resilience at a long-term boreal forest monitoring site: Ecology and evolution 9 (7), 4275-4288.

87. Bartlein, P. J., Harrison, S. P., Izumi, K. (2017): Underlying causes of Eurasian midcontinental aridity in simulations of mid-Holocene climate: Geophysical Research Letters 44 (17), 9020-9028.

88. Su, H., Jiang, J. H., Neelin, J. D., Shen, T. J., Zhai, C., Yue, Q., Wang, Z., Huang, L., Choi, Y.-S., Stephens, G. L., Yung, Y. L. (2017): Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate: Nature Communications 8 (1), 15771.

89. Padrón, R. S., Gudmundsson, L., Seneviratne, S. I. (2019): Observational Constraints Reduce Likelihood of Extreme Changes in Multidecadal Land Water Availability: Geophysical Research Letters 46 (2), 736-744.

90. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., Donohue, R. J. (2019): Hydrologic implications of vegetation response to elevated CO2 in climate projections: Nature Climate Change 9 (1), 44-48.

91. Alfred-Wegener-Institut (2016): Sibirische Lärchenwälder sind noch auf Eiszeit gepolt: 24.6.2016, https://www.awi.de/nc/ueber-uns/service/presse/pressemeldung/sibirische-laerchenwaelder-sind-noch-auf-eiszeit-gepolt.html

92. D’Orangeville, L., Duchesne, L., Houle, D., Kneeshaw, D., Côté, B., Pederson, N. (2016): Northeastern North America as a potential refugium for boreal forests in a warming climate: Science 352 (6292), 1452-1455.

93. Ols, C., Trouet, V., Girardin, M. P., Hofgaard, A., Bergeron, Y., Drobyshev, I. (2018): Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate: Global and Planetary Change 165, 1-12.

94. WSL (2018): Nordatlantisches Wetterphänomen beeinflusst extreme Samenjahre bei Bäumen in Europa: 16.1.2018, https://www.wsl.ch/de/newsseiten/2018/01/wie-die-samenmast-in-europa-synchronisiert-wird.html

95. Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., Bradford, M. A. (2015): Mapping tree density at a global scale: Nature 525 (7568), 201-205.

96. Yale University (2015): F&ES Study Reveals: There are many more trees than previously believed: 2.9.2015, https://environment.yale.edu/news/article/Yale-study-reveals-there-are-3-trillion-trees-on-earth