IV. Extremwetter

20. Wie stark werden Waldbrände durch den Klimawandel angefeuert?

1. Science.lu (2018): Potsdamer Expertin: Waldbrände in Kalifornien „angeheizt“ durch Klimawandel: 12.11.2018, https://www.science.lu/de/potsdamer-expertin-waldbraende-kalifornien-angeheizt-durch-klimawandel

2. DWD (2020): Deutscher Klimaatlas: https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html

3. Umweltbundesamt (2020): Waldbrände in Deutschland: https://www.umweltbundesamt.de/daten/land-forstwirtschaft/waldbraende#waldbrande-in-deutschland

4. Müller, M. M., Vacik, H., Diendorfer, G., Arpaci, A., Formayer, H., Gossow, H. (2013): Analysis of lightning-induced forest fires in Austria: Theoretical and Applied Climatology 111 (1), 183-193.

5. Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., Randerson, J. T. (2017): A human-driven decline in global burned area: Science 356 (6345), 1356-1362.

6. NASA (2017): NASA Detects Drop in Global Fires: 29.6.2017, https://www.nasa.gov/feature/goddard/2017/nasa-detects-drop-in-global-fires

7. Earl, N., Simmonds, I. (2018): Spatial and Temporal Variability and Trends in 2001–2016 Global Fire Activity: Journal of Geophysical Research: Atmospheres 123 (5), 2524-2536.

8. Doerr, S. H., Santín, C. (2016): Global trends in wildfire and its impacts: perceptions versus realities in a changing world: Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1696), 20150345.

9. Swansea University (2016): Wildfire: misconceptions about trends and impacts revealed in new research: 25.5.2016, https://www-2018.swansea.ac.uk/press-office/news-archive/2016/wildfiremisconceptionsabouttrendsandimpactsrevealedinnewresearch.php

10. Knorr, W., Arneth, A., Jiang, L. (2016): Demographic controls of future global fire risk: Nature Climate Change 6 (8), 781-785.

11. Karlsruher Institut für Technologie (2016): Flächenbrände: Je mehr Mensch, desto weniger Feuer: 3.5.2016, https://www.kit.edu/kit/pi_2016_068_flaechenbraende-je-mehr-mensch-desto-weniger-feuer.php

12. Turco, M., Bedia, J., Di Liberto, F., Fiorucci, P., von Hardenberg, J., Koutsias, N., Llasat, M.-C., Xystrakis, F., Provenzale, A. (2016): Decreasing Fires in Mediterranean Europe: PLOS ONE 11 (3), e0150663.

13. Schwäbische (2016): „Das Problem ist absolut selbst geschaffen“: 10.8.2016, https://www.schwaebische.de/ueberregional/panorama_artikel,-das-problem-ist-absolut-selbst-geschaffen-_arid,10506724.html

14. WWF (2011): Wälder in Flammen: Ursachen und Folgen der weltweiten Waldbrände: http://mobil.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/110727_WWF_Waldbrandstudie.pdf

15. Morales-Molino, C., García-Antón, M., Postigo-Mijarra, J. M., Morla, C. (2013): Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin: Quaternary Science Reviews 59, 5-17.

16. Keeley, J. E., Syphard, A. D. (2018): Historical patterns of wildfire ignition sources in California ecosystems: International Journal of Wildland Fire 27 (12), 781-799.

17. Der Spiegel (2018): Wieso gibt es heute mehr Großfeuer in Kalifornien?: 16.11.2018, https://www.spiegel.de/wissenschaft/waldbraende-in-kalifornien-wieso-gibt-es-dort-heute-mehr-grossfeuer-a-00000000-0002-0001-0000-000160834500

18. University of Colorado Boulder (2017): Humans have dramatically increased extent, duration of wildfire season 27.2.2017, https://www.colorado.edu/today/2017/02/27/humans-have-dramatically-increased-extent-duration-wildfire-season

19. The George Washington University (2016): It’s Not Just Climate Change: Study Finds Human Activity Is a Major Factor Driving Wildfires: 28.4.2016, https://mediarelations.gwu.edu/it%E2%80%99s-not-just-climate-change-study-finds-human-activity-major-factor-driving-wildfires

20. Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., Mahood, A. L. (2017): Human-started wildfires expand the fire niche across the United States: Proceedings of the National Academy of Sciences, 201617394.

21. Anderson, R. S., Ejarque, A., Brown, P. M., Hallett, D. J. (2013): Holocene and historical vegetation change and fire history on the north-central coast of California, USA: The Holocene 23 (12), 1797-1810.

22. Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J., Power, M. J., Scharf, E. A., Walsh, M. K. (2012): Long-term perspective on wildfires in the western USA: Proceedings of the National Academy of Sciences.

23. Swetnam, T. W., Betancourt, J. L. (2016): Mesoscale Ecological Responses to Climatic Variability in the American Southwest: USGS, https://geochange.er.usgs.gov/sw/impacts/biology/fires_SOI/

24. Mann, M. L., Batllori, E., Moritz, M. A., Waller, E. K., Berck, P., Flint, A. L., Flint, L. E., Dolfi, E. (2016): Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California: PLOS ONE 11 (4), e0153589.

25. Hanson, C. T., Odion, D. C. (2014): Is fire severity increasing in the Sierra Nevada, California, USA?: International Journal of Wildland Fire 23 (1), 1-8.

26. University of Arizona (2016): Forest Fires in Sierra Nevada Driven by Past Land Use 14.11.2016, https://uanews.arizona.edu/story/forest-fires-sierra-nevada-driven-past-land-use

27. Taylor, A. H., Trouet, V., Skinner, C. N., Stephens, S. (2016): Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE: Proceedings of the National Academy of Sciences 113 (48), 13684-13689.

28. Institute for Basic Science (2017): Atlantic/Pacific Ocean Temperature Difference Fuels US Wildfires: 26.7.2017, https://www.ibs.re.kr/cop/bbs/BBSMSTR_000000000738/selectBoardArticle.do?nttId=14759

29. Chikamoto, Y., Timmermann, A., Widlansky, M. J., Balmaseda, M. A., Stott, L. (2017): Multi-year predictability of climate, drought, and wildfire in southwestern North America: Scientific Reports 7 (1), 6568.

30. Mason, S. A., Hamlington, P. E., Hamlington, B. D., Matt Jolly, W., Hoffman, C. M. (2017): Effects of climate oscillations on wildland fire potential in the continental United States: Geophysical Research Letters 44 (13), 7002-7010.

31. Barbero, R., Abatzoglou, J. T., Brown, T. J. (2015): Seasonal reversal of the influence of El Niño–Southern Oscillation on very large wildfire occurrence in the interior northwestern United States: Geophysical Research Letters 42 (9), 3538-3545.

32. University of Kansas (2019): Satellite study of Amazon rainforest land cover gives insight into 2019 fires: 12.9.2019, https://news.ku.edu/2019/09/09/amazon-region-suffers-intense-fires-high-resolution-satellite-study-land-cover-gives

33. Chen, Y., Morton, D. C., Andela, N., van der Werf, G. R., Giglio, L., Randerson, J. T. (2017): A pan-tropical cascade of fire driven by El Niño/Southern Oscillation: Nature Climate Change 7 (12), 906-911.

34. McMichael, C. H., Correa-Metrio, A., Bush, M. B. (2012): Pre-Columbian fire regimes in lowland tropical rainforests of southeastern Peru: Palaeogeography, Palaeoclimatology, Palaeoecology 342-343, 73-83.

35. Power, M. J., Whitney, B. S., Mayle, F. E., Neves, D. M., Boer, E. J. d., Maclean, K. S. (2016): Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest: Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1696), 20150165.

36. Mundo, I. A., Villalba, R., Veblen, T. T., Kitzberger, T., Holz, A., Paritsis, J., Ripalta, A. (2017): Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests: Ecosphere 8 (9), e01932.

37. Holz, A., Veblen, T. T. (2011): Variability in the Southern Annular Mode determines wildfire activity in Patagonia: Geophysical Research Letters 38 (14).

38. Earl, N., Simmonds, I. (2017): Variability, trends, and drivers of regional fluctuations in Australian fire activity: Journal of Geophysical Research: Atmospheres 122 (14), 7445-7460.

39. Gergis, J., Cary, G. (2020): Some say we’ve seen bushfires worse than this before. But they’re ignoring a few key facts 13.1.2020, The Conversation, https://theconversation.com/some-say-weve-seen-bushfires-worse-than-this-before-but-theyre-ignoring-a-few-key-facts-129391

40. Lingenhöhl, D. (2020): Feuer in Australien: Ein Desaster aus Menschenhand: Spektrum der Wissenschaft 02/2020, https://www.spektrum.de/kolumne/ein-desaster-aus-menschenhand/1695690

41. McAneney, J. (2013): Climate change and bushfires – you’re missing the point! : 31.10.2013, https://theconversation.com/climate-change-and-bushfires-youre-missing-the-point-19649

42. Stanley, J. (2019): Humans light 85% of bushfires, and we do virtually nothing to stop it: 18.11.2019, The Conversation, https://theconversation.com/humans-light-85-of-bushfires-and-we-do-virtually-nothing-to-stop-it-126941

43. NSW Government (2019): Tough new penalty for bush fire arsonists: 21.8.2019, https://www.nsw.gov.au/news-and-events/news/tough-new-penalty-for-bush-fire-arsonists/

44. WDR5 (2020): Waldbrände und Buschbrände verhindern: https://www1.wdr.de/mediathek/audio/wdr5/wdr5-neugier-genuegt-freiflaeche/audio-waldbraende-und-buschbraende-verhindern-100.html