III. Eis

14. Das Grönlandeis schrumpft. Wann hat es das zuletzt gegeben?

1. Mernild, S. H., Hanna, E., McConnell, J. R., Sigl, M., Beckerman, A. P., Yde, J. C., Cappelen, J., Malmros, J. K., Steffen, K. (2015): Greenland precipitation trends in a long-term instrumental climate context (1890–2012): evaluation of coastal and ice core records: International Journal of Climatology 35 (2), 303-320.

2. Hawley, R. L., Courville, Z. R., Kehrl, L. M., Lutz, E. R., Osterberg, E. C., Overly, T. B., Wong, G. J. (2014): Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse: Journal of Glaciology 60 (220), 375-382.

3. Box, J. E., Cressie, N., Bromwich, D. H., Jung, J.-H., Broeke, M. v. d., Angelen, J. H. v., Forster, R. R., Miège, C., Mosley-Thompson, E., Vinther, B., McConnell, J. R. (2013): Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009): Journal of Climate 26 (11), 3919-3934.

4. Kopec, B. G., Feng, X., Michel, F. A., Posmentier, E. S. (2015): Influence of sea ice on Arctic precipitation: Proceedings of the National Academy of Sciences, 201504633.

5. Bengtsson, L., Semenov, V. A., Johannessen, O. M. (2004): The Early Twentieth-Century Warming in the Arctic – A Possible Mechanism: Journal of Climate 17 (20), 4045-4057.

6. Walsh, J. E., Fetterer, F., Scott stewart, J., Chapman, W. L. (2017): A database for depicting Arctic sea ice variations back to 1850: Geographical Review 107 (1), 89-107.

7. Alekseev, G., Glok, N., Smirnov, A. (2016): On assessment of the relationship between changes of sea ice extent and climate in the Arctic: International Journal of Climatology 36 (9), 3407-3412.

8. Schweiger, A. J., Wood, K. R., Zhang, J. (2019): Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction: Journal of Climate 32 (15), 4731-4752.

9. Halfar, J., Adey, W. H., Kronz, A., Hetzinger, S., Edinger, E., Fitzhugh, W. W. (2013): Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy: Proceedings of the National Academy of Sciences 110 (49), 19737-19741.

10. CIRES (2014): Surprising findings in Greenland’s melt dynamics: 15.12.2014, https://cires.colorado.edu/news/surprising-findings-greenland%E2%80%99s-melt-dynamics.

11. Leclercq, P. W., Weidick, A., Paul, F., Bolch, T., Citterio, M., Oerlemans, J. (2012): Brief communication „Historical glacier length changes in West Greenland“: The Cryosphere 6 (6), 1339-1343.

12. Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., Andresen, C. S., Box, J. E., Larsen, N. K., Funder, S. (2012): An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland: nature geoscience 5, 427-432.

13. Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen, T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth, F., Weckström, K., Ahlstrøm, A. P. (2012): Rapid response of Helheim Glacier in Greenland to climate variability over the past century: Nature Geoscience 5 (1), 37-41.

14. University of Copenhagen (2012): Old aerial photos supply new knowledge on glaciers in Greenland: 29.5.2012, https://news.ku.dk/all_news/2012/2012.5/glaciers_greenland_photos/

15. Rose, G. A. (2005): On distributional responses of North Atlantic fish to climate change: ICES Journal of Marine Science 62 (7), 1360-1374.

16. Polyakov, I. V., Bekryaev, R. V., Alekseev, G. V., Bhatt, U. S., Colony, R. L., Johnson, M. A., Maskshtas, A. P., Walsh, D. (2003): Variability and Trends of Air Temperature and Pressure in the Maritime Arctic, 1875–2000: Journal of Climate 16 (12), 2067-2077.

17. Wood, K. R., Overland, J. E. (2010): Early 20th century Arctic warming in retrospect: International Journal of Climatology 30 (9), 1269-1279.

18. Yamanouchi, T. (2011): Early 20th century warming in the Arctic: A review: Polar Science 5 (1), 53-71.

19. Araźny, A., Wyszyński, P., Przybylak, R. (2019): A comparison of bioclimatic conditions on Franz Josef Land (the Arctic) between the turn of the nineteenth to twentieth century and present day: Theoretical and Applied Climatology 137 (3), 2623-2638.

20. Opel, T., Fritzsche, D., Meyer, H. (2013): Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya): Clim. Past 9 (5), 2379-2389.

21. Osborne, J. M., Screen, J. A., Collins, M. (2017): Ocean–Atmosphere State Dependence of the Atmospheric Response to Arctic Sea Ice Loss: Journal of Climate 30 (5), 1537-1552.

22. Parker, A., Ollier, C. D. (2015): Is there a Quasi-60 years’ Oscillation of the Arctic Sea Ice Extent?: Journal of Geography, Environment and Earth Science International 2 (2), 77-94

23. Hahn, L., Ummenhofer, C. C., Kwon, Y.-O. (2018): North Atlantic Natural Variability Modulates Emergence of Widespread Greenland Melt in a Warming Climate: Geophysical Research Letters 45 (17), 9171-9178.

24. Miles, M. W., Divine, D. V., Furevik, T., Jansen, E., Moros, M., Ogilvie, A. E. J. (2014): A signal of persistent Atlantic multidecadal variability in Arctic sea ice: Geophysical Research Letters 41 (2), 463-469.

25. Li, F., Orsolini, Y. J., Wang, H., Gao, Y., He, S. (2018): Atlantic Multidecadal Oscillation Modulates the Impacts of Arctic Sea Ice Decline: Geophysical Research Letters 45 (5), 2497-2506.

26. Bjørk, A. A., Aagaard, S., Lütt, A., Khan, S. A., Box, J. E., Kjeldsen, K. K., Larsen, N. K., Korsgaard, N. J., Cappelen, J., Colgan, W. T., Machguth, H., Andresen, C. S., Peings, Y., Kjær, K. H. (2018): Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation: Nature Climate Change 8 (1), 48-52.

27. Ramos Buarque, S., Salas y Melia, D. (2018): Link between the North Atlantic Oscillation and the surface mass balance components of the Greenland Ice Sheet under preindustrial and last interglacial climates: a study with a coupled global circulation model: Clim. Past 14 (11), 1707-1725.

28. Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M., Bitz, C. M. (2018): Tropical Decadal Variability and the Rate of Arctic Sea Ice Decrease: Geophysical Research Letters 45 (20), 11,326-311,333.

29. Screen, J. A., Deser, C. (2019): Pacific Ocean Variability Influences the Time of Emergence of a Seasonally Ice-Free Arctic Ocean: Geophysical Research Letters 46 (4), 2222-2231.

30. Ballinger, T. J., Sheridan, S. C. (2014): Associations between circulation pattern frequencies and sea ice minima in the western Arctic: International Journal of Climatology 34 (5), 1385-1394.

31. Adolphi, F., Muscheler, R., Svensson, A., Aldahan, A., Possnert, G., Beer, J., Sjolte, J., Björck, S., Matthes, K., Thiéblemont, R. (2014): Persistent link between solar activity and Greenland climate during the Last Glacial Maximum: Nature Geoscience 7 (9), 662-666.

32. Sha, L., Jiang, H., Seidenkrantz, M.-S., Knudsen, K. L., Olsen, J., Kuijpers, A., Liu, Y. (2014): A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000yr: Palaeogeography, Palaeoclimatology, Palaeoecology 403, 66-79.

33. Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., Jahn, A. (2015): Influence of internal variability on Arctic sea-ice trends: Nature Climate Change 5 (2), 86-89.

34. Alexeev, V. A., Esau, I., Polyakov, I. V., Byam, S. J., Sorokina, S. (2012): Vertical structure of recent arctic warming from observed data and reanalysis products: Climatic Change 111 (2), 215-239.

35. Ding, Q., Schweiger, A., L’Heureux, M., Battisti, David S., Po-Chedley, S., Johnson, Nathaniel C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman, R., Steig, Eric J. (2017): Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice: Nature Climate Change 7 (4), 289-295.

36. Ding, Q., Schweiger, A., L’Heureux, M., Steig, E. J., Battisti, D. S., Johnson, N. C., Blanchard-Wrigglesworth, E., Po-Chedley, S., Zhang, Q., Harnos, K., Bushuk, M., Markle, B., Baxter, I. (2019): Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations: Nature Geoscience 12 (1), 28-33.

37. Der Spiegel (2017): Eisschwund in der Arktis: Schuld ist nicht nur der Mensch 14.3.2017, https://www.spiegel.de/wissenschaft/natur/arktis-schuld-am-eis-schwund-ist-nicht-nur-der-mensch-a-1138311.html

38. Jahn, A., Holland, M. M. (2013): Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations: Geophysical Research Letters 40 (6), 1206-1211.

39. Die Welt (2019): Grönland: Wachsender Gletscher überrascht Forscher: 29.3.2019, https://www.welt.de/wissenschaft/article191018329/Groenland-Jakobshavn-Gletscher-waechst-wieder.html

40. Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori, I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van den Broeke, M. R., Dinardo, S., Willis, J. (2019): Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools: Nature Geoscience 12 (4), 277-283.

41. NASA Jet Propulsion Laboratory (2019): Cold Water Currently Slowing Fastest Greenland Glacier: 25.3.2019, https://www.jpl.nasa.gov/news/news.php?feature=7356

42. Der Spiegel (2019): Nasa-Studie: Gletscher in Grönland wächst plötzlich wieder 29.3.2019, https://www.spiegel.de/wissenschaft/natur/groenland-jakobshavn-gletscher-waechst-ploetzlich-wieder-a-1260117.html

43. Northwestern University (2018): Ancient Greenland was much warmer than previously thought: 4.6.2018, https://news.northwestern.edu/stories/2018/june/ancient-greenland-was-much-warmer-than-previously-thought/

44. McFarlin, J. M., Axford, Y., Osburn, M. R., Kelly, M. A., Osterberg, E. C., Farnsworth, L. B. (2018): Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial: Proceedings of the National Academy of Sciences 115 (25), 6357-6362.

45. University of Copenhagen (2015): Greenland is melting – the past might tell what the future holds: 20.2.2015, https://news.ku.dk/all_news/2015/02/greenland-is-melting–the-past-might-tell-what-the-future-holds/

46. Axford, Y., Losee, S., Briner, J. P., Francis, D. R., Langdon, P. G., Walker, I. R. (2013): Holocene temperature history at the western Greenland Ice Sheet margin reconstructed from lake sediments: Quaternary Science Reviews 59, 87-100.

47. Kelly, M. A., Lowell, T. V. (2009): Fluctuations of local glaciers in Greenland during latest Pleistocene and Holocene time: Quaternary Science Reviews 28 (21), 2088-2106.

48. Briner, J. P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R. S., de Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K., Jennings, A., Kaufman, D. S., Miller, G., Rouston, C., Wagner, B. (2016): Holocene climate change in Arctic Canada and Greenland: Quaternary Science Reviews 147, 340-364.

49. Larsen, N. K., Kjær, K. H., Lecavalier, B., Bjørk, A. A., Colding, S., Huybrechts, P., Jakobsen, K. E., Kjeldsen, K. K., Knudsen, K.-L., Odgaard, B. V., Olsen, J. (2015): The response of the southern Greenland ice sheet to the Holocene thermal maximum: Geology 43 (4), 291-294.

50. University of Buffalo (2013): Greenland’s shrunken ice sheet: We’ve been here before: 22.11.2013, http://www.buffalo.edu/news/releases/2013/11/033.html

51. Briner, J. P., Kaufman, D. S., Bennike, O., Kosnik, M. A. (2014): Amino acid ratios in reworked marine bivalve shells constrain Greenland Ice Sheet history during the Holocene: Geology 42 (1), 75-78.

52. Levy, L. B., Kelly, M. A., Howley, J. A., Virginia, R. A. (2012): Age of the Ørkendalen moraines, Kangerlussuaq, Greenland: constraints on the extent of the southwestern margin of the Greenland Ice Sheet during the Holocene: Quaternary Science Reviews 52, 1-5.

53. Håkansson, L., Briner, J. P., Andresen, C. S., Thomas, E. K., Bennike, O. (2014): Slow retreat of a land based sector of the West Greenland Ice Sheet during the Holocene Thermal Maximum: evidence from threshold lakes at Paakitsoq: Quaternary Science Reviews 98, 74-83.

54. Ledu, D., Rochon, A., de Vernal, A., Barletta, F., St-Onge, G. (2010): Holocene sea ice history and climate variability along the main axis of the Northwest Passage, Canadian Arctic: Paleoceanography 25 (2).

55. Stranne, C., Jakobsson, M., Björk, G. (2014): Arctic Ocean perennial sea ice breakdown during the Early Holocene Insolation Maximum: Quaternary Science Reviews 92, 123-132.

56. Berben, S. M. P., Husum, K., Cabedo-Sanz, P., Belt, S. T. (2014): Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea: Clim. Past 10 (1), 181-198.

57. Jakobsson, M., Long, A., Ingólfsson, Ó., Kjær, K. H., Spielhagen, R. F. (2010): New insights on Arctic Quaternary climate variability from palaeo-records and numerical modelling: Quaternary Science Reviews 29, 3349-3358.

58. Lowell, T. V., Hall, B. L., Kelly, M. A., Bennike, O., Lusas, A. R., Honsaker, W., Smith, C. A., Levy, L. B., Travis, S., Denton, G. H. (2013): Late Holocene expansion of Istorvet ice cap, Liverpool Land, east Greenland: Quaternary Science Reviews 63, 128-140.

59. Miettinen, A., Divine, D. V., Husum, K., Koç, N., Jennings, A. (2015): Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly: Paleoceanography 30 (12), 1657-1674.

60. Lasher, G. E., Axford, Y. (2019): Medieval warmth confirmed at the Norse Eastern Settlement in Greenland: Geology 47 (3), 267-270.

61. Northwestern University (2019): Study shows that Vikings enjoyed a warm Greenland: 6.2.2019, https://news.northwestern.edu/stories/2019/02/study-shows-that-vikings-enjoyed-a-warm-greenland/

62. Kobashi, T., Goto-Azuma, K., Box, J. E., Gao, C. C., Nakaegawa, T. (2013): Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes: Clim. Past 9 (5), 2299-2317.

63. IPCC (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 1535 p.:

64. Pithan, F., Mauritsen, T. (2014): Arctic amplification dominated by temperature feedbacks in contemporary climate models: Nature Geoscience 7 (3), 181-184.

65. Der Spiegel (2014): Klimawandel: Träge Luft wärmt Arktis 3.2.2014, https://www.spiegel.de/wissenschaft/natur/klimawandel-forscher-legen-neue-theorie-zur-arktis-erwaermung-vor-a-950654.html

66. Cowtan, K., Way, R. G. (2014): Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends: Quarterly Journal of the Royal Meteorological Society 140 (683), 1935-1944.

67. Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., Jones, J. (2014): Recent Arctic amplification and extreme mid-latitude weather: Nature Geoscience 7 (9), 627-637.

68. Chung, C. E., Cha, H., Vihma, T., Räisänen, P., Decremer, D. (2013): On the possibilities to use atmospheric reanalyses to evaluate the warming structure in the Arctic: Atmos. Chem. Phys. 13 (22), 11209-11219.

69. Der Spiegel (2013): Die Erde erwärmt sich laut Hochrechnung doch 15.11.2013, https://www.spiegel.de/wissenschaft/natur/klima-keine-pause-der-erderwaermung-durch-temperatur-in-der-arktis-a-933884.html

70. Franzke, C. (2012): On the statistical significance of surface air temperature trends in the Eurasian Arctic region: Geophysical Research Letters 39 (23).

71. Ding, Q., Wallace, J. M., Battisti, D. S., Steig, E. J., Gallant, A. J. E., Kim, H.-J., Geng, L. (2014): Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland: Nature 509 (7499), 209-212.

72. Screen, J. A., Francis, J. A. (2016): Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability: Nature Climate Change 6 (9), 856-860.

73. Chylek, P., Hengartner, N., Lesins, G., Klett, J. D., Humlum, O., Wyatt, M., Dubey, M. K. (2014): Isolating the anthropogenic component of Arctic warming: Geophysical Research Letters 41 (10), 3569-3576.

74. Huang, J., Ou, T., Chen, D., Luo, Y., Zhao, Z. (2019): The Amplified Arctic Warming in the Recent Decades may Have Been Overestimated by CMIP5 Models: Geophysical Research Letters 46 (22), 13338-13345.